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Abstract: For an efficient utilization of 
elastomeric elements in modern 
mechanical engineering, including 
vibration insulation, it is necessary to be 
able to calculate the characteristics of 
compressive stiffness of elastomeric 
elements. Many elastomeric elements have 
the geometrical form of a complex 
configuration. In this work the design 
procedure the compressive stiffness 
characteristics of type “force – 
settlement”, for elastomeric elements of 
any geometrical form is offered at static 
loading. . In the given work for reception 
of the approached decisions it is offered to 
use direct methods using functional 
considered by V.Prager [1] and converted 
to weakly compressible materials. 
Methodology use is shown on an example 
of calculation of the concrete rubber 
absorber. 
Key words: compressive stiffness, rubber, 
shock-absorber, subareas. 
 
1. PROBLEM DESCRIPTION 
 
For an efficient utilization of elastomeric 
elements in modern mechanical 
engineering, including vibration insulation, 
it is necessary to be able to calculate the 
characteristics of compressive stiffness of 
elastomeric elements. Many elastomeric 
elements have a complex geometric 
configuration, which does not permit the 
application of variational methods of 
calculation [2, 3], effectively used in the 
calculation of elastomeric elements simple 
geometry. But for the elastomeric elements 
of complex configuration or consisting of 
well contacting parts made of various 

materials, using functionals [2, 3] virtually 
impossible to choose a continuous function 
of displacement required to satisfy the 
geometric conditions and the conditions of 
continuity throughout the volume of 
complex elastomeric element. In this paper 
considered the method of calculating the 
rigidity characteristics under static load, 
type of force - settlement, for the 
elastomeric elements of any geometric 
shapes. Deformations are assumed to be 
small. It is proposed to use the variational 
principle proposed V.Prager [1] using 
discontinuous displacement function and 
modified for weakly compressible and 
incompressible materials. 
 
2. DECOMPOSITION OF THE 
VOLUME OF THE PRODUCTS ON A 
SUBAREAS 
 
Let's consider the elastomeric element with 
the complex geometrical form with volume 
V and the area of a surface F: 
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where:  
Vn  - one-coherent regular subareas; 
N - number of subareas, received as a 
result of crushing elastomeric element; 
F - total surface area of all subdomains 
elastomeric element. 
 
The surface limiting n-th subarea, looks 
like 
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where: 
Fσ

n – loading surface; 



Fu
n – surface of the fixing; 

Γn – surface area of contact subarea 
partitioning elastomeric element. 
 
On the crushing surface Γn must be 
satisfied the conditions of continuity:  
- of displacements:  
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- and of stresses: 
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Where the index „n” specifies a current 
issue of a subarea of crushing and n

jm  and 
1+n

jm  - directing cosines normals external, 
accordingly to Vn  and Vn+1 on Γn and Γn+1. 
If you use only the external normal to Vn, 
which at Γn+1 for Vn+1 is internal, then 

1+n
jm = - n

jm  and the condition (4) reads: 
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Hereinafter, for brevity, over repeated 
lower indices are summed, and the comma 
denotes a partial derivative. 
Contact surface Γn may be artificial in the 
geometric decomposition of the 
elastomeric element, or natural, if the 
physical and mechanical characteristics of 
the material (G, μ) at the contact surface 
change abruptly, that is, a volume V 
composed of different materials.  
Partition of the elastomeric element in the 
subareas extends the permissible class of 
unknown functions in the piecewise 
smooth and piecewise continuous functions 
with piecewise smooth and piecewise 
continuous derivatives [1, 4]. Discontinuity 
of displacements and efforts on the surface 
Γn denote: 
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If the surface areas Γn of subareas Vn 
displacement components and efforts (all 

or only some) does not satisfy the 
conditions of continuity (3) and (4), then, 
using the designation (6), we can write: 
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where the indices I and II, respectively, 
indicate that the summation extends only to 
the displacement components and efforts 
that do not satisfy the conditions on the 
surface Γn. 
Suppose that in each subareas partitioning 
the have the required properties of 
continuity and differentiability. 
Variational principle for discontinuous 
functions during the fragmentation of the 
field on a subareas is given in [1]. Using 
the method of Lagrange multipliers, can be 
generalized to the case of weakly 
compressible and incompressible materials, 
which include majority of elastomeric 
materials. 
 
3. MATHEMATICAL MODEL 
 
When solving boundary value problems of 
static elasticity theory for incompressible 
and weakly compressible materials easier 
as the unknown functions to choose 
displacement ui and the function of 
hydrostatic pressure s, which, for small 
strains, leads to a mathematical model [2,3]: 
Equation of equilibrium: 
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Volumetric deformation: 
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Deformations: 
 

εij = 0,5 (ui,j + uj,i) (10) 
  
Stress 
 
σij = G [ui,j + uj,I + 3µ /(1+µ) s δij]     (11) 
 
Forces boundary conditions: 



 
G[ui,j + uj,I + 3µ /(1+µ) s δij] nj = Pi  (12) 

 
Displacements boundary conditions: 
 

i
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When partition the element into a subarea 
to a mathematical model (8) - (13) to add 
conditions for docking (3) and (4).  
In determining the integral characteristics, 
of type “force – settlement”, of the 
elastomeric element boundary problem (8) 
- (13) (without crushing the elastomeric 
element in the subareas) easier to solve a 
variational method using the Ritz 
procedure for the functional [2, 3]: 
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Using the variational principle of V.Prager 
[1] and applying the method of 
undetermined Lagrange multipliers with a 
functional (14) be the boundary value 
problem (8) - (13) with the conditions of 
the joining (3) and (4) replaced by the 
variational problem with discontinuous 
function of demand on the surfaces of the 
partition Γn for the functional: 
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where in each subare: 
ui

n –  displacement; 
sn  - function of hydrostatic pressure; 
Gn - modulus of elasticity in shear; 
µn - Poisson's ratio. 
Using the functional (15), the choice of 
displacement functions ui

n only need to 
follow geometric boundary conditions (13), 
as a function of hydrostatic pressure sn in 
each subarea can be selected 

independently, not caring about its 
continuity at the boundary of the partition 
Γn. 
As an example, consider obtaining 
dependence “force – settlement” to the 
hollow cylindrical absorber with core 
under axial compression (Fig. 1).  
Elastomeric layer is still sealed with 
absolutely rigid top and bottom plates and 
a non-deformable inner core. For this 
shock absorber is difficult to write 
expressions for the displacement common 
to all elastomeric layer. 
 

 
Fig. 1. The hollow cylindrical absorber with 

the arrester 
 
The considered absorber is broken on two 
parts on border of a thrust block in parallel 
a shaft or. At use functional ),(* suJ i  
(15), choosing ui

n and sn, it is enough to 
satisfy to geometrical boundary conditions 
on external surface Fu . Shock absorber is 
divided into two subareas (see Figure 1). 
All functions with an index „1”  it is 
carried to a subarea I, and with an index 
„2” to a subarea II. We believe that the 
geometry of the elastomeric layer can not 
take into account the compressibility of the 
elastomer, that is, believe that the Poisson 
coefficient μ = 0,5. 
The main boundary conditions will be: 
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where: the functions ui and wi - 
displacement, respectively, on the axis of r 
and z. 
 
Dependence “force – settlement” it is 
defined from the equation of balance of the 
top base of the absorber: 
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On a surface of splitting of a condition of 
ideal contact piece look like: 
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We choose conveyances un, wn and function 
sn whenever possible in the most simple 
kind with the account only conditions (11) 
and prospective character of deformation. 
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where  
A1,A2,B1,B2,C1,C2, Δ – unknown constants. 
 
Functions (19) have on section height 
approximately following appearance for 
conveyances at r = a; b:  
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Fig. 2. Expected character of deformation 

 
After integration it is received that 
functional J* depends only on unknown 
constants: 
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From a condition stationarity 
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We receive system of the algebraic 
equations. For dependence “force – 
settlement”: 
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where:  
D, D1 - determinants of algebraic equations 
(21), an expression which, due to the 
complexity of writing, are not given. 
 
For absorber: h = 3 cm, a = 2 cm, b = 4,1 
cm, k2 = 1,4 cm, G = 7 kg/cm2, in Figure 3 
shows the results: “1” line - the formula 
(22) (using MatCad); “2” line-experiment. 
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Fig. 3. Dependence force - settlement for the 
hollow cylindrical absorber with the arrester 

 
If to accept that k2 = 0 then from expressions 
(21) and (22) we will receive the absorber 
without an internal thrust block. 
 
 

 
Fig. 4. The hollow cylindrical absorber without 

the arrester 
 

In this case the dependence of the force - 
settlement will have the form: 
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Figure 5 The predicted results are: “2” line 
- according to the formula (23); “1” line - 
solution obtained in work [2]. 

 

 
Fig. 5. Dependence force - a deposit for the 

hollow cylindrical absorber without the  
arrester 

 
4. CONCLUSION 
 
The proposed method allows in case of 
partition of the investigated area V on 
subarea Vn, using functional (15) and 
discontinuous functions sought to obtain 
integrated dependences of type “force – 
settlement”. 
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