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Abstract: The paper presents a method of 
terrain classification and path planning for 
unmanned ground vehicles. The terrain 
classification is done on imagery that is 
acquired from UAV (Unmanned Aerial 
Vehicle) and is used for UGV (Unmanned 
Ground Vehicle) path planning thus 
introducing collaboration capabilities to 
the system of two. The system complements 
UGV on-board navigation system by 
increasing its perception distance and 
providing long-range path planning 
capability. 
Key words: Optical terrain classification, 
UAV, UGV, path planning, convolutional 
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1. INTRODUCTION 
 
The UAV and UGV are built in Estonia 
[1,2,3

The perception distance of an UGV is 
usually limited to visibility range of its on-
board sensors; it is seldom over 100 m [

]; current efforts are focused in 
introducing collaboration capabilities into 
the system of two. The target is to reduce 
UGV energy consumption by fusing UGV 
on-board navigation system with a long-
range path planner that relies on overhead 
imagery. 

4

To increase UGV perception distance and 
overall performance we use aerial overhead 
imagery provided by UAV for analysing 
terrain ahead of the UGV and for 
generating path to target position. We 
detect a set of features on overhead 
imagery that should be preferred (such as 
roads, grass) or avoided (buildings, water) 
during navigation and feed the acquired 
information into A* path planner. 

] 
which is sufficient for obstacle avoidance 
but is insufficient for long-term path 
planning. For off-road navigation it is 
important to know what is behind a bush or 
a house ahead for cul-de-sac or rough 
terrain avoidance. Having fresh data about 
terrain behind horizon helps to reduce 
time/energy spent on wandering and to 

avoid potentially dangerous terrain that are 
hard to detect on time with on-board 
sensors (ditches and cliffs). 

Effectiveness of fusing UGV on-board 
sensor data with overhead data has been 
previously demonstrated by Silver et al. [5

Suitability of convolutional neural 
networks for terrain classification was 
demonstrated by Sermanet et al. [

]; 
in their experiments with overhead data 
they measured significant increase in UGV 
average speed and decrease in required 
human interventions. Their experiments, 
however, relied heavily on 3D point cloud 
acquired by LiDAR mounted to UAV but 
our system must be limited to passive 
sensors (cameras, gyro, GPS). 

6,7]; they 
built a robust UGV navigation system that 
relied solely on visual data. Their system 
uses two-level architecture: fast obstacle 
detection module with perception range of 
around 5 m and slower "long-range" vision 
module with perception range around 35m. 
The short range module was trained to 
avoid immediate obstacles and long range 
modules task was to find pathways ahead. 
Our described method can be seen as 
extension to this architecture as it is adding 



an additional module with even longer 
perception range but instead of using front 
facing cameras we rely on overhead 
imagery. 
For aerial imagery terrain classification a 
multilayer convolutional artificial neural 
network is used. Based on terrain 
classification results a cost map is 
generated and fed into path planner. The 
path planner will calculate an optimal path 
to given target position from current UGV 
location (Fig. 1). The process can be 
repeated as UGV moves along the path 
learning about the terrain and as fresh 
aerial imagery becomes available.  

Comparing to our previous article [8

 

] we 
report significant increase in terrain 
classification capability of the 
convolutional neural network as the 
software that prepared imagery for the 
network has been improved and have 
added a path planner. 

2. TERRAIN CLASSIFICATION 
 
As terrain classifier we are using an 
artificial neural network (Fig. 2) with three 
hidden layers; the first two (convolutional) 
layers are feature extractors and third (fully 
connected) layer is linear classifier.  
 

Fig. 1: Terrain classification and path planning 



Fig. 2: Network structure. The input layer 
contains three or four 29x29 neuron 2D 
maps. Second layer contains six 13x13 and 
third layer contains fifty 5x5 feature maps. 
Fourth layer contains 100 fully connected 
neurons and output layer has an output per 
feature 
The convolutional layers are well suited for 
feature extraction as they can extract 
spatially local features [9] and are invariant 
to shift rotation and scale transformations 
[9

The classifier layer is fully connected layer 
of 100 neurons. In output layer there is an 
independent output for each trained 
class/feature. Each output represents 
likelihood of feature being present in input 
pattern. 

]. In addition the layers are connected so 
that they extract the features from gradient 
images instead of color intensity values 
achieving invariance to lighting conditions. 
When compared to fully connected layers 
the convolutional layers have smaller 
variable space and thus can be trained 
much faster and with smaller sample set. 

In input layer we have three 29x29 neuron 
grids; each grid is for a color channel of 
29x29 pixel input pattern. Optionally we 
can accommodate an additional grid for 
infrared channel when imagery is 
available. Near-infrared imagery can 
effectively used to detect vegetation as 
chlorophyll absorbs red light and reflects in 
the near-infrared channel. 
First hidden layer contains six 13x13 
neuron feature maps that are connected to 
input layer by using 5x5 shared kernels. 

The weights are shared by all neurons on 
same feature map that connect to given 
input grid so there are only 
(5*5+1)*6*3=468 weights connecting the 
29*29*3=2523 neurons in RGB input layer 
and 13*13*6=1014 neurons in feature 
maps (including bias connections). 
Second hidden layer contains fifty 5x5 
feature maps that are connected to previous 
layer the same way as first layer is 
connected to input layer. The layer 
contains 5*5*50=1250 neurons and uses 
(5*5+1)*50*6=7800 weights to connect 
them to previous layer. 
Third hidden layer is a fully connected 
linear classifier that contains 100 neurons; 
each of them is connected to all neurons in 
previous layer using 100*(1250+1) 
=125100 weights in total. 
Final output layer is also a fully connected 
layer that contains one neuron per feature 
category; in case of four categories it 
contains 4 neurons and 4*(100+1)=404 
weights. 
The pixel intensity values (in range [0 ... 
255]) of input pattern are fed directly into 
network inputs; the scaling of network 
inputs into range [-1..1] is left to weights 
that connect network layers. The scaling is 
necessary because we use tanh (1.7159 * 
tanh( 2/3 x) [11] to be precise) function as 
neuron activation function and we want to 
keep the neuron input in sigmoid part of 
the tanh function. To reduce training time 
we initialize the network weights into 
random value in range [-0.004 ... +0.004] 
so the network input (in range [0..255]) 
multiplied by weight (in range [-0.004 ... 
+0.004]) will be approximately in range [-1 
...+1]. 
To shorten time required for training a 
second order method called "stochastic 
diagonal Levenberg Marquardt" is used. It 
should shorten the learning time by 
threefold without introducing significant 
computational overhead. 
The optimal size (count of feature maps 
and neurons in classifier) of the network is 
still to be tested. 



3. MAP GENERATION AND PATH 
PLANNING 
 
We define map as grid of nodes; at each 
node we can predict likelihood of presence 
for all features. In short our map is grid of 
confidence vectors. To simplify the path 
planning task we use a threshold for every 
feature category (more about it later) to 
binarize the likelihood. 
After the map is binarized (at each node a 
feature must be either be definitely present 
or definitely missing) the cost map can be 
easily generated. A weight factor can be 
assigned to each feature category 
depending if the feature is easy to trespass 
(roads, grass) or hard to trespass (houses, 
bushes). The easily trespass able feature 
classes get negative weight and hardly 
trespass able terrains get positive weight. 
To calculate terrain trespass ability cost at 
each node we calculate a weighted sum and 
offset it by a positive constant that makes 
sure that the cost is always positive: 

cost =Σpiwi + const + CUGV ,    (1) 
where p is the binarized confidence vector 
and w is the weight vector. For areas that 
are explored by UGV an additional 
augment CUGV can be added to incorporate 
UGV data about the terrain. 
One thing to note here is that cost for 
unknown terrains (with no features 
detected the confidence vector is zero) is 
equal to the const that is higher than cost 
for easily trespassable terrain but remains 
lower for hardly trespassable terrain. 
For path planning A* algorithm is used. As 
the map generated from aerial imagery is a 
2D rectangular grid it is easy to define base 
cost of movement from one cell to another 
as the distance of the two nodes and 
multiply it by the cost defined earlier. Base 
cost is 1 for horizontal and vertical 
movements and sqrt(2) for diagonal 
movements. 
 
 
 
 
 

4. TEST SETUP 
4.1 Classification 
To verify the performance of the terrain 
classifier and path planner two different 
areas were selected and corresponding 
aerial RGB photographs were loaded from 
Estonian Land Board database. The 
Estonian Land Board database was used 
because of the easy availability of aerial 
imagery and because the imagery is similar 
to the imagery acquired by UAV (up to 10 
pixels per meter resolution). 
The images were hand classified and then 
scaled down by 2x in order to reduce the 
scale of manual classification errors. From 
each image two sets of data were generated 
by randomly picking 29x29 pixel patterns: 
training and testing sets for classifier. The 
training set contains 30000 patterns and 
testing set 3000 patterns. 
Additional care was taken to ensure that 
any of the patterns would not contain too 
few pixels from any of features. A pattern 
was discarded when a feature was 
presented only by few pixels in pattern: 
each feature had to be presented by at least 
100 pixels or not be presented at all. 
The network training was started with 
randomized network weights and learning 
rate of 0.1%. The whole testing set was 
introduced to the network multiple times 
(passes); the learning rate was multiplied 
by 0.9 after each pass. For training we used 
backpropagation algorithm but before each 
pass the averages of second order 
derivatives for stochastic diagonal 
Levenberg Marguardt method were 
evaluated by using 500 random patterns 
from training set. 
For validating the network prediction 
capability we found a threshold for each 
output; when an output value is above the 
threshold we say that corresponding feature 
is definitely in input pattern and if it's 
below we say it's not. 



 
Fig. 3: Network output density functions 
(when feature is present = red and when 
feature is not present = blue) and 
corresponding cumulative distribution 
functions (dotted lines). 
 
To find the threshold we fed the training 
set through classifier and for each network 
output plot out two probability density 
graphs (Fig. 3): one shows the output value 
when feature is present in the network 
input and the other when feature is not 
present in the network input. Next we plot 
out cumulative versions of the same graph 
and take the crossing point of the 
cumulative graphs as threshold for the 
output [8

4.2 Map Generation 

]. 

The easiest way to generate a map would 
be to divide a selected image to a grid of 
29x29 pixel patterns and feed each pattern 
into the classifer. In order to increase the 
map resolution it is possible to divide the 
image so that the patterns overlap. The 
experiments were done by using 10 pixel 
steps increasing the map resolution 
threefold in both directions. 
To increase the performance of map 
creation procedure it is possible to 
integrate the map generation and path 
planning procedure by evaluating the 
confidence vectors as needed by path 
planner. Each time the path planner needs a 
cost of unevaluated area the pattern of the 
area is requested and fed to artificial neural 
network. This avoids evaluating whole 
aerial photograph because only the nodes 
actually used by path planner are 
evaluated. 

5. RESULTS 
 
We used two distinct areas for testing that 
are described in more details in our 
previous article [8

 

]. One area was from 
Tallinn outskirts and other was a fen near 
Tallinn. Since we updated terrain classifier 
input formatting we have new results to 
report. 

Fig. 4: Path planning through fen 1 
 
In the outskirts area after 21 epochs of 
training the network output MSE (Mean 
Squared Error) converged to 0.066. The 
rates of good classification for houses, 
roads, grass and debris were 99.73%, 
99.80%, 99.57% and 99.20% 
correspondingly. All features were 
classified correctly on 98.33% patterns (up 
from 74.9% from previous experiment). 
 

Fig. 5: Path planning through fen 2 
 
In fen area it took 25 epochs of training 
before the network MSE converged to 0.24 
and rates of good classification for water, 
forest and roads were 92.83%, 99.43% and 
79.23% correspondingly. The "road" tracks 
in fen were full of water and even during 
hand labelling it was difficult to distinguish 



them from creek so the detection rate was 
lower. All classes were correctly classified 
on 73.7% of the patterns; up from 55.5% 
from previous experiment on same area. 
The results from classification experiments 
show that the test made were not 
exhaustive enough and further testing on 
higher quality training and testing set is 
needed. 
To verify the path planning capability of 
the system several experiments were made 
by using the overhead imagery from 
Estonian Land Board database. The feature 
category weights were chosen so that the 
path planner prefers roads and avoids 
water, houses, trees and debris (Figs. 4-6). 

Fig. 6: Path planning in suburban area 
 
6. SUMMARY AND FURTHER WORK 
 
The experiments show that our system is 
capable of extracting distinctive features 
from aerial data and use them for path 
planning. 
The work is important because estimating 
and minimizing energy consumption 
during navigation is vital in mission critical 
tasks for battery powered UGV´s. 
Estimating energy consumption allows us 
to predict if UGV is capable of completing 
given mission. Our system does not relie 
on LiDAR data allowing us to use smaller 
UAVs. 
In future we plan to carry out additional 
experiments to find optimal size for the 
artificial neural network and to further test 
the capabilities of the classsifier. We also 
plan to integrate the system with UGV on-
board navigation system and implement 
real world tests with automatic terrain 
labelling for network training. 
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