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  Abstract:  The pendulum systems are 
widely used in the engineering, but their 
qualitative behavior hasn’t been 
investigated enough. Therefore the aim of 
this work is to study new nonlinear effects 
in three driven damped pendulum systems, 
which are sufficiently close to the real 
models used in dynamics of the machines 
and mechanisms. In this paper the 
existence of new bifurcation groups, rare 
attractors and chaotic regimes in the 
driven damped pendulum systems is shown.  
Key words: pendulum systems, complete 
bifurcation analysis, method of complete 
bifurcation groups, rare attractors, chaos, 
domains of attraction. 
 
1. INTRODUCTION 
 
Recent researches in nonlinear dynamics 
show, that so-called rare attractors (RA) 
exist in all typical and well studied models 
[1-3], but are unnoticed by the traditional 
methods of analysis. The systematic 
research of rare attractors is based on the 
method of complete bifurcation groups 
(MCBG) [2]. This method allows 
conducting more complete global analysis 
of the dynamical systems. The main 
features of this method are illustrated in 
this work by three driven damped 
pendulum systems. 
Our aim is to build complete bifurcation 
diagrams and to find unknown rare regular 
and chaotic attractors using complete 
bifurcation analysis for some important 
parameters of the model: amplitudes and 
frequency of excitation. For complete 
bifurcation global analysis we have used 

the MCBG, Poincaré mappings, mappings 
from a line and from a contour, basins of 
attraction, etc. [1-3]. 
The main results of this work are presented 
by complete bifurcation diagrams for 
variable parameters of the driven damped 
pendulum systems. We consider three 
pendulum models: a) model with an 
additional linear restoring moment and 
with the periodically vibrating in both 
directions point of suspension, b) model 
with a linear restoring moment and with 
the external periodic moment of excitation, 
c) model with a sliding mass and with the 
external periodic moment of excitation. By 
building the complete bifurcation diagrams 
with stable and unstable periodic solutions, 
we have found different new bifurcation 
groups with their own rare regular and 
chaotic attractors. All results were obtained 
numerically, using original software. 
 
2. MODELS AND RESULTS 
 
The first pendulum model is shown in 
Fig.1a. The system has additional linear 
restoring moment with the harmonically 
vibrating in both directions point of 
suspension. The system has three 
equilibrium positions (Fig.1d). Backbone 
curves and restoring moment for the 
system are shown in Fig.1b,1c. Similar 
models have been examined in some works 
[4-10]. The aim of our bifurcation analysis is 
to find new rare attractors and new 
bifurcation groups. Some results of 
complete bifurcation analysis for this 
model were presented in one of the 
previous works [11]. 
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Fig. 2.   The driven damped pendulum system (Eq. 1) with linear restoring moment and with 
the periodically vibrating point of suspension in both directions. (a), (b) Bifurcation diagrams: 
state (φ, Amplitude) of the fixed periodic points versus vertical external force amplitude A2. 
There are five 1T and one 2T bifurcation groups. The system has many rare attractors of 
different kinds. Parameters: m = 1, L = 1, b = 0.2, c = 1, μ = 9.81, ω = 1.5, A1 = 0.5, A2 = var. 

The first mathematical pendulum model is 
described by following equation of motion: 
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where m – pendulum mass; L – pendulum 
length; μ – gravitational constant; φ – 
angle, read-out from a vertical; ϕ  – angular 
velocity of the pendulum, dt/dϕϕ = ; b – 
linear damping coefficient; с – linear 
stiffness coefficient; tcosA)t(x ωωω 2

21 −= , 
tsinA)t(y ωωω 2

12 −=  - suspension point 
acceleration in horizontal and vertical 
direction due to external excitation. 
The results of bifurcation analysis of the 
model (1) are represented in Figs.2-5. Five 
different 1T bifurcation groups and one 2T 
bifurcation group have been found (Fig.2). 
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Fig. 1. The driven damped pendulum 
system with an additional linear restoring 
moment and with the periodically vibrating 
point of suspension in both directions. (a) 
physical model; (b) backbone curve; (c) 
restoring moment; (d) potential well. 
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Fig. 3. Coexistence of P1 usual and rare 
attractors P1 RA for three cross-sections 
(see Fig.2). (а) Phase projections for A2 = 
0.44. The rare attractor P13 RA has the 
fixed point FP (-4.05606/1.17632). (b) The 
same for А2 = 0.526. The rare attractor P11 
RA has the FP (4.56968/-2.60245). (c) The 
same for А2 = 3.44. The rare attractor P11 
tip RA has the FP (5.23616/-0.315143). 
Parameters: m = 1, L = 1, b = 0.2, c = 1,     
μ = 9.81, ω = 1.5, A1 = 0.5, A2 = var. 
 
Two of these groups are topologically 
similar and have rare attractors of a tip 
kind Р11 RA and Р13 RA. Two period one 
brunches near A2 = 4 are not completed, 
because of problems of singularity. Other 
three 1T bifurcation groups have their own 
rare attractors P14 RA and P15 RA, which 
are stable in small parameter regions. 
Form some cross-sections of bifurcation 
diagrams (see Fig.2) the dynamical 
characteristics are represented in Figs.3,4. 
All attractors are of tip kind so each of 

them has not only periodic attractors, but 
also chaotic attractors as well. 
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Fig. 4. Chaotic attractor in the driven 
damped pendulum system for cross-section 
А2 = 4.9 of bifurcation diagram Fig.2: (а) 
Poincaré map - Cm 4×250Q×(250-1000)T; 
(b) phase projection with NT = 30T. 
Parameters: m = 1, L = 1, b = 0.2, c = 1,     
μ = 9.81, ω = 1.5, A1 = 0.5, A2 = 4.9 

 
The second pendulum model is shown in 
Fig.5a. The equation for this model is:  

tcosh)sinaa(b ωπϕϕϕϕ 11 2 =+++   (2) 
where φ – angle, read-out from a vertical; 
ϕ  – angular velocity of the pendulum, b – 
linear damping coefficient; a – linear 
stiffness coefficient; a1 – coefficient which 
include pendulum length and gravitational 
constant; h1cos(wt) – harmonical moment 
enclosed in a point of support. 
For the given system with one equilibrium 
position the complete bifurcation analysis 
was made. Results of the analysis are 
shown in Fig. 6. Feature of this system is 
the unexpected isolated P1 isle, amplitudes 
of vibrations of which are much greater 
than ones of the usual P1 regime. Also for 
these three attractors P1 the domains of 
attraction were constructed (see Fig. 7) for 
cross-section ω = 0.347 of bifurcation 
diagram in Fig.6. 
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Fig. 5. The driven damped pendulum 
system with a linear restoring moment and 
with the external periodic excited moment. 
(a) physical model; (b) backbone curve; (c) 
potential well; (d) restoring moment. 
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Fig. 6. The driven damped pendulum 
system (Eq. 2) with a linear restoring 
moment and with the external periodic 
excited moment. The system has two 1T 
bifurcation groups: usual P1 and isle P1. 
Parameters: b = 0.1, a = 1, a1 = 0.1, h1 = 1, 
ω = var., k = 7. 
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Fig. 7. Domains of attraction for three 
attractors P1. Parameters: b = 0.1, a = 1,   
a1 = 0.1,  h1 = 1, ω = 0.347, k = 7. 

 
Fig. 8. The driven damped pendulum 
model with a sliding mass and with the 
external periodic excited moment. 
 
Equations of motion for the third 
mathematical pendulum model with a 
sliding mass and with the external periodic 
excited moment (Fig. 8) are such: 
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where φ – angle of rotation, read-out from 
a vertical line; ϕ  – angular velocity; y – 
displacement of the sliding mass, read-out 
from a quiescent state; y – velocity of  the 
sliding mass; m1 – pendulum mass, l – 
length of the pendulum; m2 – second mass, 
l0 – quiescent state of the sliding mass; μ – 
gravitational constant; b1, b2 – linear 
damping coefficients of the pendulum and 
the sliding mass; с2 – linear stiffness 
coefficient of the sliding mass; 
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Fig. 10.   The driven damped pendulum system (Fig.8 and Eq. 3) with a sliding mass and with 
the external periodic excited moment. Bifurcation diagrams – amplitude of the pendulum Amp 
vs. frequency ω1 and amplitude h1 of excitation: (a) h1 = 4, ω1 = var.; (b) ω1 = 2, h1 = var. The 
pendulum system has several bifurcation groups with their own tip type rare attractors. 
Parameters: m1 = 1, m2 = 0.1, l = 1, l0 = 0.25, b1 = 0.2, b2 = 0.1, c2 = 2, μ = 10. 

tcosh)t(M 111 ωω =  – external periodically 
excited moment; h1 and ω1 – amplitude and 
frequency of excitation. 
Similar models have been studied in works 
[4,5,10]. Results for this system are 
represented in Figs.9,10. One 1T and one 
5T bifurcation group with Andronov-Hopf 
bifurcations, several symmetry breakings, 
period doublings and rare attractor P5 RA 
(see Fig.10a) have been found in the third 
model. In the Fig.10b there are 1T and 2T 
bifurcation groups with several symmetry 
breakings, period doublings, folds and tip 
type rare attractors. Global chaos ChA-1 
have been found in this pendulum system 
using Poincaré mapping Cm 4×50Q×250T 
from a contour.  These Figs. show that 
method of complete bifurcation groups 
allows finding new unnoticed before 
regimes also in the system with two-
degree-of-freedom. Thus, the application 

of this method for global analysis of forced 
oscillations is also possible for systems 
with several degree-of-freedoms.  
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Fig. 9. Global chaos ChA-1 on Poincaré 
map Cm 4×50Q×250T in the pendulum 
system (Eq. 3) with a sliding mass for 
cross-section of bifurcation diagram (see 
Fig.10). Parameters: m1 = 1, m2 = 0.1, l = 1, 
l0 = 0.25, b1 = 0.2, b2 = 0.1, c2 = 2, μ = 10, 
h1 = 4, ω1 = 2.45. 



3. CONCLUSION 
 
The pendulum systems are widely used in 
the engineering, but their qualitative 
behavior hasn’t been investigated enough. 
Therefore in this work the new nonlinear 
effects in three driven damped pendulum 
systems, which are sufficiently close to the 
real models used in dynamics of the 
machines and mechanisms, were shown. 
These results were obtained using the 
method of complete bifurcation groups. 
Only the method of complete bifurcation 
groups allows to find rare periodic and 
chaotic regimes systematically. These 
regimes can lead to small breakages of 
machine and mechanisms and to global 
technical catastrophes, because they are 
unexpected and usually have large 
amplitudes. 
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