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Abstract: This paper deals with motion of
rigid bodies with articulation joints, and
motion of tethered bodies. The general
problem of system kinematics is presented
in the first part and the motion of rigid
bodies with constraints in the second part.
The kinematics of the system is solved for
constraints  expressed in terms of
coordinates and constraints expressed in
terms of velocities. The relative motion of
systems in central gravitational field with
respect to a moving reference frame whose
origin is on a circular orbit is presented.
Key words: constraints, dynamics, multi-
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1. INTRODUCTION

When the motion of a system of bodies
which compose a large orbital station is
described with respect to reference frames
having origin in the centre of the attractive
body (Earth) the problem of integration of
motion  equations  presents  some
difficulties, because some coordinates (like
vector radii) have very great values, and
others (like distances between bodies) have
very small values. Some difficulties can be
avoided if relative motion of the system is
studied with respect to a reference frame
with known motion. Relative motion study
isn’t imposed by integration considerations
but by practical aspects.

This paper studies multi-body system
motion using Lagrange equations for
holonomic and nonholonomic systems.
Translation  conditions and  rotation
conditions are analyzed. In the case of
rigid body motion equation of mass centre
are completed with motion equation of
rotation with respect to mass centre. The

two kinds of equations (of mass centre and
of rotation with respect to mass centre) can
be parted only in particular cases. The
kinematics of body systems is solved using
coupling mechanism analysis under the
aspect of degrees-of-freedom. The motion
in central gravitational field is studied with
respect a movable reference frame with
origin on a circular orbit. The problem of
multi-body system dynamics is solved
using Lagrange equations of motion with
multipliers and constraints. For the system
of two tethered bodies obtained results by
integration of motion equations are
presented. The models and the elaborated
method allow solving a large number of
multi-body systems dynamics problems.

2. KINEMATICS OF SYSTEMS OF
RIGID BODIES

2.1 General problem

Let two bodies (i) and (j) be with
constrained motions by a coupling
mechanism which is made precise by
points O;, O; (Fig.1). The motion of the
body (i) with respect the inertial reference
frame Ooyoyo.0 IS determined by position

vector of mass centre 0,C; and by matrix
[A,] which gives the attitude of Cixyizi
trihedral, jointed with (i) body, with
respect Ooxoyo0 reference frame. In the
same way are defined position vector

0,C; and matrix |A,| for the body (j).

Each body, (i) or (j), has 6 degrees-of-
freedom, when it is a free body. The
number of degrees-of-freedom is reduced
by the number of constrains which are
imposed by coupling mechanism. If the
general motion of bodies (i) and (j) with



respect the inertial reference frame Ogxoyoz0
are known, then the relative motion of the
body (i) with respect (j) can be determined
by the vector

0,0 =(0,c+co)-loc,+co,) @

and by matrix [AUJ which gives the attitude
of (i) body with respect (j) body,

[Aij ]= [AiOIAJ'O]T )

The matrix [A,] allows expressing unit

vectors of Cixiyizi trinedral with respect unit
vectors of Ooyoyoz0 trinedral,
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For unit vectors of Ciyyizi trihedral the
bellow relation can be written,
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The attitude of (i) body with respect to (j)
body is given by matrix [A“], with relations

=[A, (5)
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and the attitude of (j) body with respect (i)
is given by |A, | matrix from relations
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From relations (5) and (6) it follows

[, 1= 1A, U
If relation (3) is multiplied to the left with
[A,] and (4) is multiplied to the left with

[A]
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Fig. 1: System of rigid bodies

and the obtained results are compared, the
equality

[AIO]T = [Ajo]T 8
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results, from where, by multiplying to the
left with[A,, ], we obtain
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From (5) and (9) relation (2) is obtained,
which is used to compute the matrix[Au.J, if

the matrices [A,] and |A,| are known.
Terms of [A,] and |A,,| matrices depend

of attitude angles of (i) body and (j) body
with respect to inertial reference frame. If
the orientation of (i) body with respect to
inertial reference frame is made precise by
¢1i, ®2i, ¢si angles, which correspond to the
1-2-3 sequence of rotations with respect to
a parallel reference frame with inertial
reference frame Ooxoyo,0 , than the bellow

matrix ([°*])

51 S5 Cai + 55 Gy

C5iCi
[Ao]: —CyiS5i —SyiS5i Sy +Cy;iCy
S,

—CyiS5iCqi Sy

Cll sZi S3| + S1i C3| ] (10)
—84iCyi CyiCyi

and angular velocity

CiCsi  Sui Oy
{a’io}: —CySy Cy Ofoy (11)
Syi 0 1jlos



are obtained. In the above relations
notations of the following form were used:

s; =singy, C; =Ccosg, (12)

2.2 Constraints expressed by coordinates
When constraints are functions of
coordinates the motion of systems of rigid
bodies can be studied with Lagrange
equations for holonomic systems with
dependent variables. Coupling mechanisms
between body (i) and body (j) imposes
restrictions on relative motion of the body.
Bellow, some simple coupling mechanisms
for which constraints can be expressed
with functions of coordinates are analyzed.
2.2.1. Free linkage

When the coupling mechanism doesn’t
impose restrictions coordinates which are
describing relative motion (displacements
and rotations) number of constraints is
zero. Each body has 6 degrees-of-freedom
and the motion is studied considering two
free bodies, despite of the coupling
mechanism, which permits, translations
with respect three directions and rotations
about three axes. The case of “free”
linkage is a limit case and it presents the
importance only for the case in which a
particular coupling mechanism becomes a
“free” linkage. As an example can be
considered the case of tethered bodies for
particular situation of zero tension in the
cable.

2.2.2. Fixed linkage

When the relative motion of (i) body with
respect to (j) body has zero degrees-of-
freedom the system of two bodies becomes
a rigid one degrees-of-freedom. Relative
displacement condition, in vector form is

0,0,=0, (13)

and conditions of invariable relative

orientation are:
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Index “0” from right part of above relations
corresponds to initial moment and it shows
that inner products from left side are

constants. If relation (5) is written in the
form
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relations (14) become:
a'llll = (aiij1)o' a;jz = (aizjz )ov a’i*js = (a’i*je.)o (16)

2.2.3 Spherical joint

Spherical joint reduces the number of
degrees-freedom with three units. Vector
form of constraint is condition (13).

2.2.4. Linkage of translation

When the coupling mechanism allows
translations in three some directions the
number of degrees-freedom is reduced with
three units and constraints are of the (16)
form.

2.2.5. Connection with flexible cable
Coupling mechanism with flexible cable
reduces the number of degrees-freedom
with one unit. The distance between points
of connection of flexible cable is a constant
one, and conditions is

o0
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2.3. Constraints expressed by velocities
When constraints are expressed by
velocities (velocities of translations or
angular velocities) the motion is described
with Lagrange equations for nonholonomic
systems. Coupling mechanism can be
analyzed from the point of view of allowed
mobility. Bellow translations mobility and
rotations mobility are analyzed.

2.3.1. Translation conditions

If the coupling mechanism allows
translations in three some directions, the
number of constraints which correspond to
translations is zero. If the coupling
mechanism allows translations in two

directions of vectors t,(t,.t,,.t,,) and

jIx? Sjlyr tjlz
tj_z(tjzX,tjzy,tjzz) with components in the
system of (j) body, than the constraint is

expressed by inner product
(Vor =y )02, ) =0 (19)

The above relation can be written in matrix
form with components of vectors from the




trihedral of (j) body. Velocity v_OI is
expressed with components in reference
frame of (i) body, velocity v, is expressed
with components in reference frame of (j)
body and (18) becomes

Vol —or}, = 1A o) ~ i) =

[t odeod- el B deo ) a9
[A,HAO Jve,} + [0 fc0.}) ([AJO]VCJ [”A’m]{cjoj})
In the above equations velocities {v,, }, {Vg |

of points C;, respectively C; are expressed
with components from Ooxoyoz0 reference
frame, matrices|a,, |, {C/O,} are expressed
with components in reference frame of (j)
body. For cross products, the vector

{w}{wi} (20)

0 -0 o
b= @, 0 -0 (21)

Matrix form of (18) becomes
I_Aji K[Aﬁo]{VCi }+ l@.,oJ{CiOi })_ 22)
- ([Ajo]{VCj }+ [&)LO]{CJ.OJ. }))]T [[ij]{tiz} =0

When the coupling mechanism allows one

translation in direction of t(tlx,tJy tJZ)

vector which is expressed with components
in the trihedral of (j) body, two scalar
relations which correspond to vector form

Vo —Voy = At (23)
can be written and this shows co-linearity
of relative velocity of body (i) with body
() with t, vector. Matrix form of (23)
condition is

|_Aji K[Aio]{VCi }+ I.é}i‘OJ{CiOi })_ (24)
_([Ajo]{vci }+ [C?)J',O]{Cjoj}):/q“t {tj}
2.3.2. Rotation conditions

When the coupling mechanism allows
rotations with respect to some three

directions, the number of constrains is
zero.
If the coupling mechanism allows rotations

with respect to directions determined by
VECOrs r(r,,ry,.ry,) and rjz(erX,rjzy,rjzz),

which are expressed with components in (j)
body reference frame, condition

(@0 —ay0)-(FxT2)=0 (25)

can be written, or in matrix form,
HAji ]{wi,o}_ {a’j,o }]T [[fjl]{er} =0 (26)
If the coupling mechanism allows one
rotation with respect to the direction

determined by vector rj(rjx,rJy JZ) which

is expressed with components in (j) body
reference frame, than two scalar conditions
which are included in vector form

@ = @)= A r 27)

can be written, or in matrix form,
lAJ'i J{a)i,O}_ {a’j,o}z A {rj} (28)

3. LAGRANGE EQUATIONS FOR
HOLONOMIC  SYSTEMS  WITH
DEPENDENT VARIABLES

For a non-holonomic rheonomic system Lagrange
equations for h coordinates

d( cE
dt[mk}mk %

are completed with constraints

a,(k=12,---,h) (29)

h
Zaiqu +b =0, (i =12, p) (30)
k=1
which can be written in the form
h
> adg +bdt=0, (i=12-p) (31
k=1

By solving the system of h equations (29)
and p equations (31), g, coordinates and

A, multipliers are found. In the case of a

holonomic system constraints have the
form

®(q, .0y, t)=0(i=12,---p) (32)
and differential form is obtained as



i Ldg, +bdt=0, (i=12,---p) (33)
k=1 dJk
From (33) and (30) it follows
0 0% 34)
ik = O’)qk
and equations (29) become
d( &
dt[éqkjéqk_Qﬁk;MD (k=12,---,h) (35)
If the function
U¢=Zp:/l,q>l (36)

is introduced, than, equations (35) can be
written in the form

d(é’EJ_éE:Qk+é’um

. (k=12,---,h) (37)

dt\ 24, ) A G

Fig. 2. System of tethered bodies

From the h above equations and p
constraints (32)  functions  which
correspond to h generalized coordinates
g, and to p multipliers A, are determined.

In the case of plane relative motion of two

tethered bodies, scalar condition (32) is

‘0102‘ =l =const. (38)
With components of the vector (fig. 2.)
0,0,=CM, +M0, -(CM, +M,0,)  (39)

on the axes of Cygy trihedral the bellow
constraint

® = pf + p; —2p,p,08(6, - 6,)+ 23, COS oy, +
+2pib, 005(91 -6,- (032)_ 2p,a 005(91 -0,+ (/’31)_
—2p,b, cos p;, +2ab, 005(01 =0, + ¢y - ?’32)"’

(40)
+aZ+bl 17 =

is used to form the

is obtained, which
function

U, = A0 (41)

From equations (31) and the above
constraints, equations of motion for the
system of two tethered bodies are obtained:
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Equations (42) are valid only if the tension
in the flexible cable is positive one. When
the cable isn’t stretched equation of motion
are obtained from (42) for zero value of A
parameter. Tension in the cable can be
computed using one equation for one
isolated body. In figures 3-5 results
obtained by integration of (42) equations

are presented ([]).

Two cylindrical bodies with radii of bases
of 10m, respectively 20m, connected by
one cable of 500m length are considered.
Relative motion of two bodies is studied
with respect to a circular motion of
10500km radius.

8000

FOOO |- ]
OO0 |- b A7 e —
5000 . .
T T R rD Ser TR B e O ———

3000

Vector radius

2000

1000 [~ ——="""

o 200 400 600 800
Rotations

Fig. 3

100

Angular coordinate

B T TTt SERSSITEY NSRS

.150 ! ! ;
0 200 400 600 800
Rotations
Fig. 4
50 - : '
0 ¥ i i
@ o/ !
g’ :;I i o
© m{ :
@ -50 ;
o
2
=
<  -100
-150, 200 400 600 800
Rotations
Fig. 5

4. CONCLUSIONS

The problem of kinematics for systems of
bodies are solved using analyzes of
coupling mechanism under the aspect of
number of degrees-of-freedom. The motion
in central gravitational field is studied with
respect a movable reference frame with
origin on a circular orbit. The problem of
dynamics of bodies system is solved using
Lagrange equations of motion with
multipliers and constraints. For the system
of two tethered bodies obtained results by
integration of motion equations are
presented. Models and elaborated method
allow solving of a great number of
problems of bodies’ systems dynamics in
gravitational field.
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