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Abstract: This paper deals with motion of 
rigid bodies with articulation joints, and 
motion of tethered bodies.  The general 
problem of system kinematics is presented 
in the first part and the motion of rigid 
bodies with constraints in the second part. 
The kinematics of the system is solved for 
constraints expressed in terms of 
coordinates and constraints expressed in 
terms of velocities.  The relative motion of 
systems in central gravitational field with 
respect to a moving reference frame whose 
origin is on a circular orbit is presented. 
Key words: constraints, dynamics, multi-
body system  

1. INTRODUCTION 
When the motion of a system of bodies 
which compose a large orbital station is 
described with respect to reference frames 
having origin in the centre of the attractive 
body (Earth) the problem of integration of 
motion equations presents some 
difficulties, because some coordinates (like 
vector radii) have very great values, and 
others (like distances between bodies) have 
very small values. Some difficulties can be 
avoided if relative motion of the system is 
studied with respect to a reference frame 
with known motion. Relative motion study 
isn’t imposed by integration considerations 
but by practical aspects.  
This paper studies multi-body system 
motion using Lagrange equations for 
holonomic and nonholonomic systems. 
Translation conditions and rotation 
conditions are analyzed.  In the case of 
rigid body motion equation of mass centre 
are completed with motion equation of 
rotation with respect to mass centre. The 

two kinds of equations (of mass centre and 
of rotation with respect to mass centre) can 
be parted only in particular cases. The 
kinematics of body systems is solved using 
coupling mechanism analysis under the 
aspect of degrees-of-freedom. The motion 
in central gravitational field is studied with 
respect a movable reference frame with 
origin on a circular orbit. The problem of 
multi-body system dynamics is solved 
using Lagrange equations of motion with 
multipliers and constraints. For the system 
of two tethered bodies obtained results by 
integration of motion equations are 
presented. The models and the elaborated 
method allow solving a large number of 
multi-body systems dynamics problems. 

2. KINEMATICS OF SYSTEMS OF 
RIGID BODIES 
2.1 General problem 
Let two bodies (i) and (j) be with 
constrained motions by a coupling 
mechanism which is made precise by 
points Oi, Oj (Fig.1). The motion of the 
body (i) with respect the inertial reference 
frame O0x0y0z0  is determined by position 
vector of mass centre iCO0 and by matrix 
[ ]0iA  which gives the attitude of Cixiyizi 

trihedral, jointed with (i) body, with 
respect O0x0y0z0 reference frame.  In the 
same way are defined position vector 

jCO0  and matrix [ ]0jA  for the body (j).  
Each body, (i) or (j), has 6 degrees-of- 
freedom, when it is a free body. The 
number of degrees-of-freedom is reduced 
by the number of constrains which are 
imposed by coupling mechanism. If the 
general motion of bodies (i) and (j) with 



respect the inertial reference frame O0x0y0z0 
are known, then the relative motion of the 
body  (i) with respect (j) can be determined 
by the vector 

( ) ( )jjjiiiij OCCOOCCOOO +−+= 00  
(1) 

and by matrix [ ]ijA  which gives the attitude 
of (i) body with respect (j) body, 

[ ] [ ][ ]Tjiij AAA 00=  (2) 

The matrix [ ]0iA  allows expressing unit 
vectors of Cixiyizi trihedral with respect unit 
vectors of O0x0y0z0  trihedral,  
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For unit vectors of Cixiyizi trihedral the 
bellow relation can be written, 
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The attitude of (i) body with respect to (j) 
body is given by matrix [ ]ijA , with relations  
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and the attitude of (j) body with respect (i) 
is given by [ ]jiA  matrix from relations 
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From relations (5) and (6) it follows  

[ ] [ ]Tjiij AA =  (7) 

If relation (3) is multiplied to the left with 
[ ]TiA 0  and (4) is multiplied to the left with 

[ ]TjA 0   
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Fig. 1: System of rigid bodies  

and the obtained results are compared, the 
equality 
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results, from where, by multiplying to the 
left with [ ]0iA , we obtain 
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From (5) and (9) relation (2) is obtained, 
which is used to compute the matrix [ ]ijA , if 
the matrices [ ]0iA  and [ ]0jA  are known. 
Terms of [ ]0iA  and [ ]0jA  matrices depend 
of attitude angles of (i) body and (j) body 
with respect to inertial reference frame. If 
the orientation of (i) body with respect to 
inertial reference frame is made precise by 
φ1i, φ2i, φ3i angles, which correspond to the 
1-2-3 sequence of rotations with respect to 
a parallel reference frame with inertial 
reference frame O0x0y0z0 , than the bellow 
matrix ([ 8 ]) 
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and angular velocity 
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are obtained. In the above relations 
notations of the following form were used: 

iiii cs 1111 cos,sin ϕϕ ==  (12) 

2.2 Constraints expressed by coordinates  
When constraints are functions of 
coordinates the motion of systems of rigid 
bodies can be studied with Lagrange 
equations for holonomic systems with 
dependent variables. Coupling mechanisms 
between body (i) and body (j) imposes 
restrictions on relative motion of the body. 
Bellow, some simple coupling mechanisms 
for which constraints can be expressed 
with functions of coordinates are analyzed. 
2.2.1. Free linkage 
When the coupling mechanism doesn’t 
impose restrictions coordinates which are 
describing relative motion (displacements 
and rotations) number of constraints is 
zero. Each body has 6 degrees-of-freedom 
and the motion is studied considering two 
free bodies, despite of the coupling 
mechanism, which permits, translations 
with respect three directions and rotations 
about three axes. The case of “free” 
linkage is a limit case and it presents the 
importance only for the case in which a 
particular coupling mechanism becomes a 
“free” linkage. As an example can be 
considered the case of tethered bodies for 
particular situation of zero tension in the 
cable.  
2.2.2. Fixed linkage 
When the relative motion of (i) body with 
respect to (j) body has zero degrees-of-
freedom the system of two bodies becomes 
a rigid one degrees-of-freedom. Relative 
displacement condition, in vector form is 

0=ijOO , (13) 

and conditions of invariable relative 
orientation are: 

( ) ( ) ( )
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,, jijijijijiji kkkkjjjjiiii ⋅=⋅⋅=⋅⋅=⋅  (14) 

Index “0” from right part of above relations 
corresponds to initial moment and it shows 
that inner products from left side are 
constants. If relation (5) is written in the 
form 
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relations (14) become: 

( ) ( ) ( )033330222201111 ,, ijijijijijij aaaaaa ===  (16) 

2.2.3 Spherical joint 
Spherical joint reduces the number of 
degrees-freedom with three units. Vector 
form of constraint is condition (13).   
2.2.4. Linkage of translation 
When the coupling mechanism allows 
translations in three some directions the 
number of degrees-freedom is reduced with 
three units and constraints are of the (16) 
form. 
2.2.5. Connection with flexible cable 
Coupling mechanism with flexible cable 
reduces the number of degrees-freedom 
with one unit. The distance between points 
of connection of flexible cable is a constant 
one, and conditions is  

0ijij OOOO =  (17) 

2.3. Constraints expressed by velocities 
When constraints are expressed by 
velocities (velocities of translations or 
angular velocities) the motion is described 
with Lagrange equations for nonholonomic 
systems. Coupling mechanism can be 
analyzed from the point of view of allowed 
mobility. Bellow translations mobility and 
rotations mobility are analyzed. 
2.3.1. Translation conditions 
If the coupling mechanism allows 
translations in three some directions, the 
number of constraints which correspond to 
translations is zero. If the coupling 
mechanism allows translations in two 
directions of vectors ( )zjyjxjj tttt 1111 ,,  and 

( )zjyjxjj tttt 2222 ,,  with components in the 
system of (j) body, than the constraint is 
expressed by inner product 

( ) ( ) 021 =×⋅− jjOjOi ttvv  (18) 

The above relation can be written in matrix 
form with components of vectors from the 



trihedral of (j) body. Velocity Oiv  is 
expressed with components in reference 
frame of (i) body, velocity Ojv  is expressed 
with components in reference frame of (j) 
body and (18) becomes 
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In the above equations velocities{ }Civ , { }Cjv  
of points Ci, respectively Cj  are expressed 
with components from O0x0y0z0 reference 
frame, matrices [ ]0,ˆiω , { }iiOC  are expressed 
with components in reference frame of (j) 
body. For cross products, the vector   
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is associated to the antiskew matrix,  
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Matrix form of (18) becomes 
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When the coupling mechanism allows one 
translation in direction of ( )jzjyjxj tttt ,,  
vector which is expressed with components 
in the trihedral of (j) body, two scalar 
relations which correspond to vector form  

jtOjOi tvv λ=−  (23) 

can be written and this shows co-linearity 
of relative velocity of body (i) with body 
(j) with jt  vector. Matrix form of (23) 
condition is 
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2.3.2. Rotation conditions 
When the coupling mechanism allows 
rotations with respect to some three 

directions, the number of constrains is 
zero. 
If the coupling mechanism allows rotations 
with respect to directions determined by 
vectors ( )zjyjxjj rrrr 1111 ,,  and ( )zjyjxjj rrrr 2222 ,, , 
which are expressed with components in (j) 
body reference frame, condition 

( ) ( ) 0210,0, =×⋅− jjji rrωω  (25) 

can be written, or in matrix form, 

[ ]{ } { }[ ] [ ]{ }[ ] 0ˆ 210,0, =− jj
T

jiji rrA ωω  (26) 

If the coupling mechanism allows one 
rotation with respect to the direction 
determined by vector ( )jzjyjxj rrrr ,, , which 
is expressed with components in (j) body 
reference frame, than two scalar conditions 
which are included in vector form  

jrji rλωω =− 0,0, , (27) 

can be written, or in matrix form, 

[ ]{ } { } { }jrjiji rA λωω =− 0,0,  (28) 

3. LAGRANGE EQUATIONS FOR 
HOLONOMIC SYSTEMS WITH 
DEPENDENT VARIABLES 
For a non-holonomic rheonomic system Lagrange 
equations for h coordinates    
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are completed with constraints 
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which can be written in the form 

( )pitbqa i

h

k
kik ,2,1,0dd

1
==+∑

=

 (31) 

By solving the system of h equations (29)  
and p equations (31), kq  coordinates and 

iλ  multipliers are found. In the case of a 
holonomic system constraints have the 
form 

( ) ( )pitqq hi  ,2,1,0,,,1 ==Φ  (32) 

and differential form is obtained as 
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From (33) and (30) it follows 
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and equations (29) become 
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If the function  
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is introduced, than, equations (35) can be 
written in the form 
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Fig. 2. System of tethered bodies 

From the h above equations and p 
constraints (32) functions which 
correspond to h generalized coordinates  

kq  and to p multipliers iλ  are determined. 
In the case of plane relative motion of two 
tethered bodies, scalar condition (32) is   

.OO 21 constl ==  (38) 

With components of the vector (fig. 2.) 

( )22211112 OMCMOMCMOO +−+=  (39) 

on the axes of Cxcyc trihedral the bellow 
constraint 
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is obtained, which is used to form the 
function 

Φ=Φ λU . (41) 

From equations (31) and the above 
constraints, equations of motion for the 
system of two tethered bodies are obtained:  
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Equations (42) are valid only if the tension 
in the flexible cable is positive one. When 
the cable isn’t stretched equation of motion 
are obtained from (42) for zero value of λ 
parameter. Tension in the cable can be 
computed using one equation for one 
isolated body. In figures 3-5 results 
obtained by integration of (42) equations 
are presented ([ 7 ]). 
Two cylindrical bodies with radii of bases 
of 10m, respectively 20m, connected by 
one cable of 500m length are considered. 
Relative motion of two bodies is studied 
with respect to a circular motion of 
10500km radius. 
 

 Fig. 3 

Fig. 4 

Fig. 5 

4. CONCLUSIONS 
The problem of kinematics for systems of 
bodies are solved using analyzes of 
coupling mechanism under the aspect of 
number of degrees-of-freedom. The motion 
in central gravitational field is studied with 
respect a movable reference frame with 
origin on a circular orbit. The problem of 
dynamics of bodies system is solved using 
Lagrange equations of motion with 
multipliers and constraints. For the system 
of two tethered bodies obtained results by 
integration of motion equations are 
presented. Models and elaborated method 
allow solving of a great number of 
problems of bodies’ systems dynamics in 
gravitational field. 
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