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  Abstract: The equivalence of the stan-
dard method of damped normal modes and 
the method of modal strain energies in 
computation of the response of rather hea-
vily damped sandwich structures is demon-
strated. Estimation of the response of dam-
ped sandwich beams to harmonic excita-
tion is here based on the truncated integral 
modal transformation in which the base 
functions are the modal data from the asso-
ciated undamped system. This approach is 
in fact a reinterpretation of the concept of 
damped normal modes so that it allows to 
carry out all the necessary numerical com-
putations only in the real domain while 
previous formulation required numerical 
treatment in the complex domain. 
Key words:  sandwich beams, complex mo-
dulus, damped normal modes, strain 
energy ratio 
 
1. INTRODUCTION 
 
Material damping significantly influences 
the response of vibrating structures to 
external excitation. Despite the steady 
progress in experimental methods the 
modelling of damping of structures persists 
to remain as the most problematic issue 
connected with modelling and simulating 
of the response of complex structures. One 
of the most popular and widespread 
methods of modelling the damping of real 
structures vibrating under harmonic forces 
is the use of complex moduli. The 
vibroelastic damping behaviour of applied 
materials is incorporated in equations of 
motion through the constitutive law, in 
which for the real modulus E the complex 
modulus ER+iEI is susbstituded. 

The most simple model of this type with 
constant moduli ER and EI is referred to as 
the structural damping, the hysteretic 
damping or as the frequency-independent 
damping. Thus, when the problem is 
formulated for vibrating continuum, the 
stiffness operator becomes complex and 
consequently also the resulting response is 
given by complex valued vector function. 
It is necessary to add, that this model is 
admitted only under harmonic regime [1]. 
For the formal justification of the use of 
the concept of complex damping the 
correspondence principle is often quoted in 
western literature. In former Soviet sources 
the Sorokin`s hypothesis is frequently 
mentioned in the same context.  
The use of complex moduli in structural 
analysis is evidently rather a rough simpli-
fication. Engineers are highly satisfied be-
ing able to estimate only the global mani-
festation of the dissipative processes in the 
response. However, this simplification 
calls forth at least the following conceptual 
difficulties: 
First, the eigenvalues of the appropriate ei-
genvalue problem always appear in pairs -
αr +iωr and αr +iωr, so that half of the 
solutions exhibit asymptotic instability of 
flutter type. This mathematical inconsis-
tency is usually obviated by admitting only 
the harmonic regime or more or less 
equivalently by saying that from physical 
reasons the asymptotic stability is required 
besides of the fulfilment of the initial and 
boundary conditions. Then the unstable 
“half” of solutions is excluded by the 
choice of zero valued integration constants. 
Second, hysteretic damping used in engi-
neering applications often results in physic-



cally impossible non-causal response, na-
mely when transient excitation is conside-
red. The acceptability of some degree of 
non-causality for reasonable damping 
parameters has been discussed by Lundén 
[2] with the conclusion that it is the price 
for simplifying the modelling of damping 
and it`s numerical treatment. Needless to 
admit, that in conventional analysis [3-5] 
this is only one of many of other simpli-
fications about the linearity, isotropy, 
boundary conditions, etc. 
 
2. GOVERNING EQUATIONS OF 
DAMPED SANDWICH BEAM 
 
Passive damping of vibrating structures can 
be achieved by using the sandwich type of 
structures, consisting of a viscoelastic core 
material constrained between two elastic 
face layers. Basic idea behind the constrai-
ned layer damping technique is the dissi-
pation of energy through the shear defor-
mation induced in the viscoelastic core due 
to flexure. The aim of the designer is to 
allow as much shear strain in the core as 
possible to obtain sufficient level of dissi-
pation. Classical theory of flexural vibra-
tion of sandwich beams was elaborated 
first by DiTaranto [6]. Mead and Markuš 
[7] in series of works have contributed 
substantially to the theory by putting it to a 
form, which is nowadays considered to be 
a standard. According to this theory only 
harmonic regime is considered, so that in 
the sense explained above it is legitimate to 
introduce the hysteretic damping of the 
core through the complex shear modulus 

 )1(22 βiGG +=∗ , (1) 

where the β is the core loss factor, which is 
believed to be a material constant. For sim-
plicity, we assume here that G2 and β are 
frequency-independent constants. Damped 
harmonic vibration of one-dimensional 
continuum is then described by a model of 
the response in standard form 

 BMKLfWL ipTT +−== 2, , (2) 

where K, M, B are the matrices of linear 
differential operators corresponding to dy-
namic stiffness, mass and damping, W and 
f are vector functions of the response amp-
litude and of external excitation, respecti-
vely. The function W belongs to the space 
of comparison functions, satisfying all the 
boundary conditions, f has only real 
components and the p is non-dimensional 
frequency of harmonic excitation. 
Mass operator M is diagonal. Assuming, 
that the dissipation in the face layers is 
negligible, the damping operator for model 
(1) becomes 

 Gii KB β= , (3) 

where the KG is essentially an extraction of 
that part of the stiffness operator K, which 
is proportional to the core shear modulus 
G2. 
The actual form of operators for the case of 
sandwich beam has the structure 
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where a, t1, t3 are parameters characterising 
the geometrical configuration of the sand-
wich beam, while the shear modulus G2 
appears as factor in the non-dimensional 
parameter g, reflecting the stiffness of both 
the core and the face layers. Explicitly, the 
damping matrix is of form 
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Note the nice regular structure of matrices, 
which form the operators K, KG and indi-
rectly also the damping operator iB. Each 
of these matrices is symmetric in even 
order differential expressions and antisym-
metric in expressions of odd order. How-
ever, when combined into operator LT defi-



ned in (2), due to presence of the factor 
(1+iβ) over the diagonal and at the same 
time also under the diagonal, the symmet-
ries are completely lost for β ≠ 0 and the 
operator LT is non-Hermitian.  
 
2. EXACT RESPONSE OF DAMPED 
SANDWICH BEAM 
 
The scalar product in the space of complex 
valued vector functions is defined as 
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where T denotes transposition and the 
overbar denotes the complex conjugate. 
The adjoint operator corresponding to the 
operator 

 MBKL λ−+= iT  (5a) 
reads 

 ,MBKL λ−−=∗ iT  (5b) 
as it is easily verified using the Green`s 
identity 

 ( ) ( )VLUVUL ∗= TT ,, . (6) 
At this point the LT

* is the formal adjoint 
of LT, as we have not defined the precise 
domains of operators LT and LT

*. The 
variationaly optimal domains of operators 
LT and LT

* require fulfilment of funda-
mental boundary conditions for the “left” 
comparison functions U as well as conside-
ration of adjoint boundary conditions for 
the “right” comparison functions V. The 
data (eigenvalues and eigenfunctions) from 
both the fundamental and adjoint eigen-
value problems 
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are necessary to obtain the exact response 
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The data can be scaled to fulfil the biortho-
gonality relations 
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where δjk is the Kronecker delta. 
Though K, B, M are formaly selfadjoint, 
the operator LT is non-selfadjoint due to 
the presence of the non-Hermitian damping 
operator iB. Therefore the eigenvalues of 
LT and LT

* are in general complex-valued 
and there does not exist simple relation 
between the eigenfunctions Uk and adjoint 
eigenfunctions Uj

* except for the biortho-
gonality relation (9). 
Unless the operator B does not commutate 
with the operator (K-λM), both the fun-
damental and the adjoint eigenvalue prob-
lems (7) are to be solved numerically to 
obtain the exact response. To emphasize, 
that the exact solution is rather cumber-
some and demanding, it is necessary to 
add, that all the computations are to be 
performed in the complex domain. 
 
3. METHOD OF DAMPED NORMAL 
MODES 
 
 To avoid the complicated exact solution, 
many other alternative schemes of approxi-
mate solutions of the eigenvalue problems 
of the damped structures have been propo-
sed.  
The widespread method of “damped 
normal modes” was developed by Mead 
and Markuš [7]. This method claims the 
existence of special loading distribution for 
each possible beam resonance, which 
excites corresponding uncoupled modes 
and it is claimed, that at resonant frequency 
the beam behaves like a single-degree-of-
freedom system. Instead of solving the 
adjoint boundary value problem, particular 
form of forced vibration is searched for the 
beam being excited by a “damped normal 
loading” in order to enable uncoupled 
modal analysis. The reasoning, given in [7], 
is based among others on orthogonality of 
damped modes under evidently inconsis-
tent scalar product 
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in which the complex conjugation of the 
generally complex function Y is ignored. 
Due to lack of firm mathematical foun-
dation, the concept of damped normal 
modes can not be considered as an equiva-
lent alternative to the exact solution (8). 
Present paper is an attempt to find out the 
consequencies of speculations with incor-
rect scalar product. In other words, the que-
stion posed is, which alternate approximate 
solution is most close to the popular con-
cept of damped normal modes. 
An alternate method of approximate solu-
tion is developed in the following para-
graph, in which the simplifications are 
openly declared. To our surprise, the nu-
merical results obtained by both the dam-
ped normal modes and by the modal strain 
energy ratio are perfectly identical. The 
conclusion then is, that both methods are 
legitimate only as an approximation. 
 
4. APPROXIMATE SOLUTION 
 
It is not an easy task to find the complex 
fundamental and adjoint eigenfunctions Uk 
and Uj

*, that are necessary for computing 
the exact solution (8) of the damped prob-
lem (2). In practical applications the eigen-
functions of the associated undamped 
eigenvalue boundary problem are often 
used to estimate the exact solution (8) as 
well as to estimate the dissipative beha-
viour of the damped sandwich beam. Let 
us suppose that the boundary conditions 
are specified so that the associated undam-
ped problem 

( ) [ ] 0)1(),0(, ==⋅− WWfWMK Bλ  (10) 
is selfadjoint and positive definite. Then 
the eigenvalues λi, i=1,2,... are positive and 
the eigenfuctions Wi are real and 

 ( ) ( ) .,,, iijjiijji λδδ == KWWMWW (11) 

The following analysis is based on the 
truncated set of first n eigenfunctions 
giving rise to the truncated eigenmatrix 

 [ ]nWWWV ,,, 21 = . (12) 
Integral modal transformation in the trun-
cated base V assigns to the operators K, M, 
B and LT the spectral matrix  
 [ ]nλλλ ,,,diag 21 =S , (13) 
the unity matrix I and the matrices H and Z 
by relations  
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where the (.,.) is the scalar product (4). 
Matrices H and Z are generally nondia-
gonal except for the special case when the 
operator B commutes with both the K and 
M. The consequence is that the discretized 
equations of motion are coupled, possible 
approximation to simplify the solution is to 
neglect the off-diagonal elements in matrix 
H. With approximation hij=0, i≠j, the 
matrix Z is now diagonal: 

 .2 QSISZ βip +−=  (15) 
According to Hasselman [8] or Warburton 
[9] such an approximation is admissible in 
many problems. The diagonal elements of 
matrix H can be expressed as 

 ( )iiiih BWW ,= . (16) 

Integrating by parts we find 
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Obviously the expressions hii can be inter-
preted as the strain energy due to the shear 
deformations of the core multiplied by the 
material loss factor β. Let us extend by 
unity the left side of (17) as follows: 
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and denote  
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which is the portion of the potential energy 
Psi due to shear deformation of the core 
and of the total potential energy Pi of the 
undamped sandwich beam vibrating in i-th 
mode, i.e.  
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Rearranging (18) and using (19),(20) toget-
her with the first of orthogonality relations 
(14) we arrive to key relation of the present 
analysis 
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isiii pqh β=  (21) 

Neglecting the off diagonal terms hij, i.e. 
with the approximation hij=0, i≠j the mat-
rix Z becomes diagonal 

 ,2 QSISZ βip +−=  (21) 
where  

 [ ].,,,diag 21 snss qqq =Q  (22) 

The Galerkin procedure leads to the solu-
tion 
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in which the generalized coordinates ak(t) 
are given by the uncoupled differential 
equations 
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where ( )fVf ,=a . The steady state solution 
of (24) is 
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In this way the diagonalization of the 
damping matrix H, by omitting the off-dia-
gonal elements, approximates the non-pro-
portionally damped beam by a special type 
of proportional damping. Thus, for each 
mode different values of proportionality 
constants are valid. To each mode it is pos-

sible to assign an individual damping fac-
tor, which can be percieved from the global 
point of view as frequency dependent 
quantity. With the traditional proportional 
damping it is not possible to individualize 
the measure of damping capacity from 
mode to mode.  
 
5. COMPARISON OF APPROXIMATE 
METHODS  
 
Mead and Markuš [7] analyzed the vibra-
tion of damped sandwich beams using a 
special class of forced, uncoupled and 
complex modes of vibration. To find the 
response of the damped sandwich beam, 
the computations according to their method 
are to be carried out in the complex do-
main. The modal loss factor is then found 
from complex eigenvalues by the classical 
relation 
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However, the detailed analysis of their pa-
per [7] and the comparison of numerical re-
sults based on both the concept of damped 
normal modes and the approach adopted in 
the previous paragraph shows, that the 
result are completely identical. The funda-
mental difference is that the modal strain 
energy approach presented here requires 
computations only in the real domain, 
which are obviously significantly easier to 
perform than the numerical computations 
in complex domain. The modal loss factor 
(26) is according to (21) given by simple 
relation 
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where the quantity qsk, the ratio of shear 
deformation energy to the total deforma-
tion energy, is computed from (19), i.e. 
from the data of the associated undamped 
system. Variation of qsk with the shear 
parameter g follows exactly the pattern of 
the loss factor versus the shear parameter 
curves known from the numerous literature 
on sandwich beams. The modal loss factor 



is then obtained from the values qsk by 
simple multiplication by the material loss 
factor without the need of recalculation for 
new values of the material loss factor, 
when the task of the designer was to search 
for optimal core material.  
 
6. CONCLUSION 
 
The modal strain energy approach presen-
ted in previous paragraph 4 is compre-
hended as reinterpretation of the concept of 
damped normal modes developed by Mead 
and Markuš [7]. The same results are now 
obtained by calculations carried out enti-
rely in the real domain, what is conside-
rable simplification of the numerical treat-
ment of the problems of the vibration of 
damped structures.  
As a chalenge for future research remains 
the realisation of the exact computations in 
line with the exact solution (8), which has 
surprisingly never been undertaken. The 
possible explanation is in the fact, that the 
exact solution requires except for the fun-
damental eigenfunctions also the adjoint 
eigenfunctions, resulting from yet undeve-
loped adjoint boundary conditions. In any 
case, there is probably no real chance to 
avoid the necessity of solving both the 
fundamental and the adjoint eigenvalue 
problems (7) in attempt to find the exact 
solution (8) or to carry out decoupled 
modal analysis. Any trics and simplifi-
cations to avoid the demanding effort to 
obtain the exact solution (8) lead to com-
promises, which should be responsibly and 
critically evaluated. 
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