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Abstract: 
This paper presents a method to perform a 
surface finish control using a computer 
vision system. The goal pursued was to 
design an acceptance criterion for the 
control strategy. Class 1 would contain 
those parts with low roughness—
acceptable— and class 2 those with high 
roughness —defective. 
We have used 140 images obtained from 
AISI 303 stainless steel machining. 
Images were described using five different 
methods – Hu, Flusser, Taubin, Zernike 
and Legendre moments.  
Classification was done using k-nn and 
neural networks. With k-nn the best error 
rate – 4.7% – was achieved using Hu and 
Flusser descriptors. 
With the neural network, a ten node hidden 
layer network with 300 cycles using 
Legendre descriptors leads to the optimal 
configuration – 4.7% error rate. 
Key words: roughness control, textural 
descriptors, moments descriptors, k-nn, 
neural network classification. 
 
1. INTRODUCTION 
 
Some properties play a significant role in 
the surface finish of machined parts. These 
properties are directly related to the surface 
finish grade, which is determined by the 
manufacturing processes and the materials 
used. Thus, measurement of the surface 
finish grade has been a matter of special 
interest in the machining research during 
the last fifty years. The surface finish can 
be estimated by means of some roughness 
parameters defined in international 
standards [1]. Development of these 

standards is basically oriented to tactile 
measuring devices that provide two–
dimensional records of part profile. 
Nevertheless, surface measurement 
technologies have significantly evolved 
during last decades, from the first 
analogical contact devices to the current 
digital techniques [2].  
Among modern techniques, those based on 
computer vision can be remarked. The 
advantages this technology provides are 
diverse. Whereas tactile techniques 
characterize a linear track over the part 
surface, computer vision techniques allow 
characterizing wide areas of the part 
surface providing more information [3–5]. 
Also, computer vision techniques take 
measures faster, since images are captured 
in a very short time, and they can be in-
machine implemented. In addition, the 
application of exhaustive validity checking 
to each part is also possible. This aspect 
would be very difficult to achieve with 
traditional tactile perfilometers, which are 
slow and delicate. 
Continuous advances have been made in 
sensor technologies. Particularly, vision 
sensors have been greatly enhanced in 
capabilities and price decrement. 
Additionally, advances in image processing 
technology provide more reliable 
conclusions than before.  
In all, computer vision is a very interesting 
technology for industrial environment. The 
use of these systems for the monitoring of 
operations in machining has proved [6, 7] an 
important reduction in the cycle time and 
the required resources. As far as the 
traditional contact techniques are 
concerned, computer vision techniques use 



other parameters to measure the surface 
finish. In the light of this perspective, the 
current standards developed for tactile 
devices do not reflect the current state of 
technology. New procedures are necessary 
to correlate the results obtained by tactile 
instruments with those obtained with other 
type of devices, as those based on 
computer vision. In this context, two lines 
should be remarked: the study on the 
spatial domain and the study in the 
frequency domain. This work tackles the 
measurement of surface quality from the 
point of view of the spatial domain. 
Tarng and Lee [8] and Lee et al. [9] analyze 
the artificial vision and image analysis 
systems to quantify the roughness in 
different turning operations. Methods 
based on image analysis capture an image 
of the surface and analyze its pixels to 
obtain a diffuse light pattern. Later on, 
roughness parameters are calculated by 
means of statistical descriptors. One of the 
most used parameters is the standard 
deviation of gray levels. Kumar et al. [10] 
focus on milling, turning and molding 
processes. They make zoom over original 
images to obtain the Ga parameter (the 
image gray level average), finding a high 
correlation amongst the Ga parameter and 
the surface roughness. Al-Kindi ET al. [3] 
propose a method named intensity–
topography compatibility (ITC), 
characterizing the image data by three 
components: lightning, reflectance and 
surface characteristics. They calculate the 
value of conventional roughness 
parameters combining statistical such as 
mean value and standard deviation. Lee et 
al. [6] developed a computer vision system 
that measures the roughness in turning 
processes automatically. 
 
The rest of the paper is organized as 
follows: Sect. 2 describes the image 
acquisition process. Image procession is 
included in Sect 3 and the classification 
stage in Sect. 4. Finally, conclusions are 
summarized in Sect. 5. 
 

2. SAMPLES AND IMAGE 
ACQUISITION  
 
2.1 Test parts and machining 
characteristics 
Test parts were made of AISI 303 
X8CrNiS18–9 stainless steel. This material 
was chosen due to the wide use in the small 
part mass-manufacturing industry. A 
MUPEM CNC multi–turret parallel lathe 
—ICIAR/1/42 model— was used for the 
machining of parts. 

 
Fig. 1. Test part. 
 
The test part is showed in Fig. 1. Several 
part operations were carried out, all of 
them representative of massive precision 
machining. However, only the cylindrical 
shape was used for surface finish 
measurement. Cutting tools were coated 
carbide inserts from Sandvik. The 
machining parameters used for the tests 
were fixed at the following values: cutting 
speed 250 m/min, feed rate 0.27 mm/rev 
and cutting depth 2 mm, considered as 
reference values. A surface finish control 
was performed on a HOMMEL–WELKE 
class 1 perfilometer. It was evident that the 
evolution of surface finish Ra values was 
far worse when increasing the machining 
time. 
 
2.2 Image acquisition 
Images of the parts were captured using a 
specific location fixture which had attached 
a camera and a diffuse lighting system 
(Figure 2). The part was positioned onto a 
‘V’ shape bracket. The lighting system 
comprised a FOSTEC regulated light 
source DCR RIII. A NER SCDI-25-F0 
diffuse illumination SCDI system was used 
to avoid shines. The system provided 
diffuse illumination in the camera axis.  



The images were obtained using a Pulnix 
PE2015 B/W camera with 1/3” CCD. A 
Matrox Meteor II frame grabber card was 
used to digitize the images. 
The optic assembly was composed of an 
OPTEM industrial zoom 70XL, with an 
extension tube of 1X and 
0.5X/0,75X/1.5X/2.0X OPTEM lens. We 
used the maximum magnification of the 
system. 
 

 
Fig. 2. Acquisition system. 
 

     
Fig. 3. Original images with Ra of 2.47µm 
-upper- and 4.33 µm -lower. 
 
2.3 Experimental sets of images 
Using such system, 143 images were 
captured (see Fig. 3). Each of the images 
was labelled with its Ra roughness 
parameter, obtained using the median of 
three repeated Ra measuring. The 
roughness values were in the range 2.40 to 
4.33 µm. Several experiments were carried 
out and the images were divided in two 
sets: the first class corresponds to low 
roughness (satisfactory) and the second 
class to high roughness (unacceptable). 
Three different cases were considered. In 
the first case, the first thirty images 
(ordered by Ra values) were separated 
from the last thirty. In the second case, one 
class was composed by the first fifty 
images and the second one by the last fifty. 
In the third case, seventy of them were 

assigned to class 1 while the other seventy 
to class 2.  
 
3. IMAGE PROCESSING AND 
FEATURE EXTRACTION METHODS 
 
3.1 Image pre-processing 
A vertical Prewitt high pass filter was 
applied to the complete set of images in 
order to enhance contrast and make easier 
the description of roughness. Later on, five 
sets of descriptors were obtained for the 
original images and also for the filtered 
images. Fig. 3 shows images before 
filtering and Figure 4 shows the same 
images after filtering. 
                  

  
Figure 4. Filtered images with Ra of 2.47 
µm -upper- and 4.33 µm -lower. 
 
3.1 Texture descriptors 
Five different feature vectors were 
obtained by computing some texture 
descriptors based on moments: seven 
moments of Hu, six moments of Flusser, 
eight moments of Taubin, the moments of 
Zernike up to order 6 (16 features) and 
Legendre moments up to order 2 (9 
features). 
 
4. CLASSIFICATION METHODS 
 
The former feature vectors were classified 
by means of k-nn using the ‘random 
sampling’ validation method. This let us to 
compare the results of classification with 
those obtained by means of neural 
networks. The neural network used was a 
multilayer Perceptron, with an output layer 
with two nodes for the classification into 
the low or acceptable roughness class and 
the high or unacceptable class. The number 
of nodes in the input layer was determined 
considering the dimension of input patterns 
in each case, which runs from six features 



corresponding to the Flusser descriptors 
until sixteen features corresponding to 
Zernike descriptors. The optimum number 
of nodes in the hidden layer and training 
cycles have been selected empirically. The 
learning algorithm belongs to the group of 
‘back propagation’ algorithms, in particular 
the Levenberg-Marquadt optimized 
version. 
The method of validation is a ‘random 
sampling’ type. This method divided the 
available set of images in subgroups 
randomly, 70% for training and 30% for 
test. The iterative process was repeated ten 
times and the mean error was calculated. 
Also, the effect of data normalization over 
the classification error was analyzed. The 
feature vector values were normalized, in 
such a way that a translation and a scaling 
were applied to each random sampling 
extracted from the training set. The 
translation of the group of vectors was 
applied from its own centroid to the origin 
of the space in order to achieve a medium 
value of cero. The scaling was done 
dividing each vector by the medium energy 
of the group, calculated as the root mean 
square. This operation leads to a standard 
deviation value of one. 
 
4.1 k- nearest neighbours  
The best results have been achieved with 
the orthogonal moments of Zernike and 
Legendre and also with the invariants 
moments of Hu. The lower error is 5% 
approximately for the cases of thirty and 
fifty images by class and the low class has 
a superior rate of failure. The error 
increases up to 10% when using seventy 
images and the error distribution is fairly 
uniform among the classes. Table 1 shows 
the minimum errors in each class for the 
three descriptors that show the best results.  
 

Hu Zernike Legendre # 
Ima 

Low High Low High Low High  
10.33 3.33 7.78 2.22 8.89 4.44 30 
8.00 4.00 9.33 2.00 8.00 3.33 50 

10.95 9.05 10.00 8.57 10.95 9,52 70 
Table 1. Minimal errors in each class.  
 

4.2 Neural network 
The error rates obtained with the neural 
network training are similar, lower than 
10% for several descriptors. The error rate 
was 4.67% with fifty images in each class 
and using the Legendre descriptors. All 
descriptors enhance their results when 
using the vertical Prewitt filtering, with the 
exception of Zernike descriptors whose 
behaviour is just the opposite. 
All descriptors were used for this test 
except Taubin descriptors. The reason is 
that the poor results obtained with Taubin 
descriptors indicate that they are not 
adequate for this problem. 
 

 100 300 500 1000 1500 
Hu 

1 13.89 29.44 13.89 18.89 20.00 
5 26.67 17.22 17.78 20.00 14.44 
10 20.56 13.33 17.78 17.22 20.56 
15 24.44 22.22 20.56 15.56 21.11 

Zernike 
1 40.56 47.22 43.33 42.22 47.78 
5 46.67 50.00 44.44 45.56 40.56 
10 44.44 43.89 35.00 40.00 40.00 
15 36.67 38.33 41.67 39.44 41.67 

Legendre 
1 16.67 16.11 20.56 17.22 24.44 
5 11.67 16.67 15.00 16.11 23.89 
10 13.89 16.67 26.67 13.33 20.56 
15 15.56 10.00 9.44 13.89 10.00 

Flusser 
1 23.33 27.78 23.89 37.22 26.11 
5 29.44 31.11 35.00 34.44 32.78 
10 32.22 30.56 32.78 32.22 22.78 
15 35.56 33.89 27.78 27.78 36.11 

Table 2. Error rates. Classes with 30 
images filtered with Prewitt. 
 
Table 2 shows the global error rate for the 
case of thirty images in each class and 
using only filtered images, since the best 
results are obtained with them. The values 
in the first row and first column are the 
number of cycles and the number of nodes 
in the hidden layer, respectively. 
Table 3 and 4 shows the global error rate 
for the other cases, that is, fifty and seventy 
images in each class. It is observed that the 
lower error rates correspond to the fifty 
images case, even better than those 
obtained with thirty images. 



The reason of this behaviour may be that, 
in the case of thirty images, the training set 
is not wide enough for optimum network 
learning and a reliable classification. 
In the case of seventy images the error 
rates increase up as expected, since values 
near to the decision border in both classes 
are very close. 
 

 100 300 500 1000 1500 
Hu 

1 10.33 17.33 9.67 16.33 11.33 
5 15.00 19.67 14.67 23.00 15.67 
10 14.00 12.33 13.33 13.00 11.00 
15 9.67 18.33 22.00 11.33 16.33 

Zernike 
1 35.33 42.33 36.00 37.67 32.67 
5 46.67 45.67 43.00 48.67 49.33 
10 45.33 49.00 43.00 44.67 43.00 
15 45.33 42.33 46.00 42.00 46.00 

Legendre 
1 27.00 13.67 15.33 19.67 30.33 
5 12.33 12.67 8.67 15.33 8.00 
10 10.67 4.67 5.33 8.00 15.00 
15 9.33 12.00 9.00 5.67 8.33 

Flusser 
1 30.33 14.00 15.67 18.33 30.67 
5 17.67 23.33 22.00 20.00 27.33 
10 29.67 34.00 30.00 31.33 35.67 
15 26.00 40.00 28.00 29.33 30.33 

Table 3. Error rates. Classes with 50 
images filtered with Prewitt 
 

 100 300 500 1000 1500 
Hu 

1 24.05 19.52 26.19 22.86 19.29 
5 19.29 14.29 21.67 21.90 19.05 
10 19.05 13.81 19.76 16.43 14.52 
15 13.57 19.76 19.05 25.71 15.48 

Zernike 
1 31.19 24.05 25.00 19.29 37.86 
5 48.10 44.76 46.19 45.24 42.14 
10 46.90 45.48 46.90 47.38 43.33 
15 44.76 43.33 44.05 49.29 43.33 

Legendre 
1 27.38 26.90 24.52 18.81 35.95 
5 24.76 16.67 25.71 22.62 17.86 
10 22.62 20.48 16.19 20.71 18.81 
15 21.90 16.90 19.76 17.86 15.24 

Flusser 
1 21.90 21.67 25.71 32.38 17.38 
5 30.24 23.57 28.57 24.52 16.67 
10 28.57 18.57 29.76 25.48 26.67 
15 31.90 34.29 25.00 29.76 30.95 

Table 4. Error rates. Classes with 70 
images filtered with Prewitt. 
 
 

4.3 Minimal errors 
Table  5 and 6 show the minimal errors 
obtained with each descriptor and with 
both classification methods. The n 
parameter indicates that feature vectors are 
normalized. It can be observed that the 
KNN classifier gives better results in all 
cases. 
 

# Images Classification Hu Zernike
KNN  6.67 5 
KNN n. 10 17.78 
MLP 13.3 36.7 

30 

MLP n. - - 
KNN  5.67 5.67 
KNN n. 4.67 22.33 
MLP  9.7 32.7 

50 

MLP n. 12.67 18.67 
KNN  10 9.29 
KNN n. 7.86 20.24 
MLP  13.6 19.3 

70 

MLP n. 15.95 18.33 
Table 5. Minimal errors with Hu and 
Zernike descriptors. 
 

#. Class. Legendre Flusser Taubin
KNN  6.67 19.44 42.22 
KNN n. 11.67 6.67 32.78 
MLP 9.4 22.8 - 

30

MLP n. - - - 
KNN  5.67 20.33 34.33 
KNN n. 22.67 4.67 36.33 
MLP  4.7 14 - 

50

MLP n. 5.33 11 - 
KNN  10.24 31.9 45.19 
KNN n. 13.57 10.95 40.71 
MLP  15.2 16.7 - 

70

MLP n. 11.43 15.48 - 
Table 6. Minimal errors with Legendre, 
Flusser and Taubin descriptors. 
 
5. CONCLUSION 
 
This paper proposes a method to carry out 
the quality of surface finish of machined 
metallic parts. The performance of five 
different sets of descriptors was analyzed, 
applied on both filtered and unfiltered 
images. In general, filtered images showed 
a better performance. The best results were 
achieved using k-nn classification, with 
normalized data and Flusser and Hu 



descriptors, obtaining an error rate of 
4.67%. Results achieved with a MLP 
neural network were similar in terms of the 
error rate. 
The results show that the use of texture 
descriptors is a feasible method to evaluate 
the roughness of metallic parts in the 
context of product quality. 
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