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Abstract: This paper presents a brief overview of the global 
optimization methods and experimental comparison of 
appropriate software. By solving of set of the recognized test 
problems using software based on different search methods, the 
reliability of obtaining of the global extremums is compared. 
Based on conducted analysis, it is shown a high effectivity of 
developed by authors’ optimization algorithm in comparison 
with the modern genetic algorithms. In most cases high 
reliability is obtained with a noticeably smaller computation 
labor-intensity.
Key words: optimization, stochastic global search, genetic 
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1. INTRODUCTION 
 
The development of competitive technical engineering systems 
in these days is unimaginable without their optimization. In the 
development stages of various machines, constructions and 
complex mechatronic systems, computer modeling on the basis 
of mathematical models with the purpose of detailed 
investigation and improvement of their properties is becoming 
more and more widespread. In the field of mechanical 
engineering, the so-called virtual prototyping tools – software 
(Auzins et al., 2003 b; Janushevskis et al., 2000) that allows 
automatically creating mathematical models of mechanical 
systems to estimate the dynamical and strength properties of 
various objects and carry out their parametrical optimization,– 
are widely used. In practice, one is frequently faced with the so-
called global optimization task. 
From a mathematical point of view, if the optimization criterion 
does not satisfy the Lipschitz conditions and the search region 
is not limited, then factually it is incorrectly formulated in the 
sense that the criterion function’s global optimum cannot be 
located with given accuracy after a specific limited number of 
calculations of the criterion function. In the case of the general 
“black box” model, the global optimization is carried out 
without a priori knowledge of the surface of the criterion 
function, which is defined by the criterion and the constraints. 
The domain of attraction is defined as a surface region where 
there is a local minimum and the constraints are satisfied. The 
method of global optimization must have a mechanism that 
allows to leave local minimums, while local optimization 
methods do not have such a mechanism and therefore attraction 
regions “catch” the local search methods. For this reason global 
search algorithms employ heuristic methods to search for new 
attraction regions.  
The minimums of found promising regions often are located 
using such local improving procedures as gradient descent, 
Newton and quasi-Newton and other methods. It must be noted 
that in many practical tasks the finding of the global optimum is 
incommensurably costly, and sub-optimal solutions must 
suffice. Therefore various possibilities of obtaining the global 
optimum are sought for. One of the approaches is building and 
optimization of so-called metamodels. 
 

2. THE RESPONSE SURFACE METHOD OF 
SYSTEM OPTIMIZATION 
 
Optimal design is based on a mathematical model of the object. 
The level of complexity of practical systems is frequently very 
high, and their models are complicated non-linear high order 
equation (differential, integral, algebraic and others) systems, 
the parameters of which are not precisely known. Their 
parametric and structural identification and solution demands 
very large computing time resources. In such cases, to carry out 
optimization, the response surface method (RSM) (Myers & 
Montgomery, 2002; Auzins & Janushevskis, 2002; Rikards 
&Auzins, 2003) or the neural network approach (Waszcyszyn 
& Ziemianski, 2003) is usually used. The development of 
metamodels (surrogate models) from a small number of very 
time-consuming calculations, namely, mathematical 
experiments (in this case one must speak of a model of a 
model) or natural experiments, is a applied method of obtaining 
an empirical model that would allow to relatively easily find the 
global optimum. 
In the construction of metamodels, polynomial functions, 
stochastic Kriging (Simpson et al., 2001) models, rational base 
functions (Dyn et al., 1986) or adaptive regression splines 
(Friedman, 1998) are most often employed. Polynomial 
functions stand out with the simplicity of their construction and 
calculation speed, which is very important for the carrying out 
of global optimization. Using RSM, the acceptable number of 
criterion and constraint calculations may be significant, and 
reach hundreds of thousands and even millions of tries, since its 
calculation requires a significantly smaller amount of time than 
the criterion calculation of the initial model. 
 
3. A SHORT REVIEW OF THE GLOBAL 
OPTIMIZATION METHODS 
 
In the solution of technical engineering problems, one is 
frequently faced with mixed non-linear programming problems 
with constraints, where the role of optimization parameters is 
taken up both by discrete and continuous variables. In many 
cases, it is possible to interpret the discrete variables as 
continuous ones. The constraints are most often taken into 
account by the transformation of the original problem into a 
problem without constraints, using penalty functions, barrier 
methods and Lagrange multipliers. Here we will discuss in 
more detail the methods used specifically in the case of 
continuous variables. The global search methods (Horst & 
Pardalos, 1995) can be divided into deterministic methods and 
stochastic methods. Deterministic methods employ such 
heuristic as the modification of search trajectories into trace 
based methods, as well as the introduction of penalties to avoid 
regions where there are no optimal solutions. Covering methods 
(Horst & Tuy, 1993)] isolates a region that does not contain a 
global optimum, and discards it, not searching there any further. 
This guarantees quality of the solution, iteratively reducing the 
search region. The obtaining of the solution requires a very 
thorough search of the space, that is, these methods are very 
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time-consuming if the size of the problem is large. Branch and 
bound methods and interval methods recursively divide the 
search region into smaller sub-regions and separate the regions 
that do not contain an optimal solution. They are covering 
methods that estimate the criterion function’s lower boundaries 
in the search sub-regions, allowing to estimate the quality of the 
local minimum. Combining this with numerically verifiable 
optimality sufficiency conditions, they allow to confirm the 
global optimality of the best obtained solution. However, in 
order to guarantee the quality of the solution, the problem must 
satisfy the Lipschitz conditions. In the worst case, they demand 
an exponentially increasing computational burden, and 
therefore are very time-consuming. In general, this “branch and 
bound” principle may be successfully employed in other 
heuristic-based methods. However, if the search region is large, 
these methods work badly. 
Generalized descent methods (Vincent et al., 1992) continue the 
search trajectory every time that a local minimum is found. In 
the first approach, the trajectory methods modify the 
differential equation that describes the local descent trajectory 
in such a way that they may evacuate themselves from the local 
minimum. Their weakness is the large number of function 
calculations that must be carried out in regions that aren’t 
promising. In the second approach, the criterion function is 
modified by imposing a penalty so that the algorithm would not 
return to an already found local minimum. The weakness 
consists in the fact that the more local minimums are found, the 
more difficult it becomes to minimize the modified criterion 
function. 
So the determined methods may be divided into: 1) point-based 
methods that calculate the function in discrete points, for 
example, the generalized descent methods; and 2) region-based 
methods that calculate the function constraints in compact sets, 
for example, the covering methods. The point-based methods 
are unreliable but require less calculation, and vice versa. 
The stochastic global optimization methods rely on 
probabilities to make decisions in searching for extremes. 
Random search methods include pure random search with 
single or multiple starts, random search along a line, adaptive 
random search, partitioning into subsets, substitution of the 
worst point, evolutionary algorithms and simulated annealing 
(Horst & Pardalos, 1995). The simplest way of getting out of a 
local minimum is to restart. The cluster or grouping methods 
(Torn & Viitanen, 1992) employ cluster analysis to avoid the 
already found local minimums. There are two strategies for 
grouping points around local minimums: 1) retaining only 
points with relatively small function values; 2) transferring 
every point to the local minimum, making only few local search 
steps. They work badly if the surface of the function is very 
rough, or if the search is captured in a deep ravine surface of 
local optimums. Methods that are based on stochastic models 
employ random variables to simulate the unknown values of the 
criterion function. The Bayesian method (Mockus, 1994) is 
based on a random function and minimizes the expected 
deviations from the global minimum estimation. Its 
effectiveness is not high. 
Simulated annealing (Aarts & Korst, 1989) uses an analogy for 
the physical phenomenon that, heating and then slowly cooling 
metallic wares, a more homogenous crystalline state is 
obtained, in which the free energy of the base substance has a 
global minimum. The role of temperature has an important 
significance, since it allows the system to reach its lowest 
energy states with probability according to Boltzmann’s 
exponential law, in such a way that it is possible to step over 
the energy sub-barriers, which would’ve otherwise forced the 
system to remain in the local minimum. Similarly as in physical 
annealing, convergence in simulated annealing may be slow. 
Therefore many improvements are used to speed up the 
process. 

Genetic algorithms (GA) (Andre et al., 2001; Renders & Flasse, 
1996; Koza, 1993) use biological evolution analogies, allowing 
mutations and crossovers between good local optimum 
candidates in the hope that ever better optimums will be found. 
In each search stage a configuration of all populations is 
maintained. Mutations are carried out in local searches, while 
crossovers operators ensure a possibility of leaving the local 
minimum attraction regions. The crossovers laws have a large 
probability of creating offspring of similar or better fitness. The 
effectiveness of GA depends on the correct conditions of 
selection and crossovers. The coordinates interchanging are 
sufficiently good if these coordinates have a nearly independent 
influence on fitness, but if the influence is strongly correlated, 
as it is with functions with deep narrow ravine surfaces that are 
not parallel to coordinate axes, then GA has great difficulties. A 
successful configuration of GA demands a thorough 
investigation of the concrete problem. 
Taboo search (Battiti, 1994) introduces a taboo list that contains 
information on the search history. In each iteration a local 
improvement is made. However, thanks to the taboo list, 
movement towards already located solutions is forbidden, that 
is, a taboo has been placed. The taboo list protects from 
returning to the local optimum from which the search has 
recently evacuated. Taboo searches give good results in the 
solution of large discrete optimization problems. 
Stochastic methods are classified as unreliable. However, these 
methods are often the only ones that allow the solution of large-
scale problems with an acceptable workload. Currently in 
engineering practice exactly the stochastic methods are the 
most frequently applied. Therefore the developed Edaopt 
(Auzins et al., 1999 and 2003 a) optimization algorithm is 
compared only with these most effective methods. 
 
4. ANALYSIS OF OBTAINED RESULTS 
 
To evaluate the search effectiveness of the developed random 
search two-phase multistart optimization algorithm (below 
Edaopt), it was tested by solving set of test problems (Andre et 
al., 2001). Figure 1 shows the test functions or their 
characteristic sections with the global minimums found by 
Edaopt. They were found with a practically 100% success in all 
search series. In solving some of the problems (for example, 
Griewank10, which contains several thousands of local 
minimums in a 10 parameter space), the algorithm occasionally 
converged to extremes close to the global optimum rather than 
to the global optimum itself. In this way in all cases the most 
promising optimum region was found. This has a great 
significance, since in practical tasks it is very important not to 
miss these regions. 
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Fig. 1. Test function minimums found by Edaopt 
 
Table 1 shows comparative results between Edaopt and 
standard GA and improved genetic algorithm (GA+) software. 
To make objective comparison possible, it was necessary to 
adhere to the calculation conditions given in literature (Andre et 
al., 2001). Since stochastic methods were evaluated, then the 
search for each function’s minimum was attempted 100 times. 
The search was considered successful if the function’s global 
minimum was found with the given accuracy. As can be seen, 
standard GA guarantees a 100% success (global minimum  

Number of 
calculations 

Absolute error Success 
% 

Function 
(Number 
of para-
meters) 

GA GA+ 
 

Edaopt 
 

GA GA+ Edaopt GA GA+

F1 (1) 5566 784 156 0.000 0.000 0.0000 100 100

F3 (1) 5347 744 131 0.001 0.014 0.0002 100 100

Branin 
(2) 

8125 2040 593 0.003 0.002 0.0018 81 100

Camel 
Back (2) 

1316 1316 346 0.005 0.005 0.0048 98 100

Goldstein 
Price (2) 

8185 4632 816 0.229 0.013 0.0127 59 100

PShubert
1 (2) 

7192 8853 32849 4.563 0.983 0.4467 63 100

PShubert
2 (2) 

7303 4116 1430 4.772 0.986 0.8593 59 100

Quartic 
(2) 

8181 3168 1134 0.003 0.002 0.0018 83 100

Hartman 
3 (3) 

1993 1680 1150 0.025 0.020 0.0197 94 100

Shekel5 
(4) 

7495 36388 500187 6.067 0.072 0.0521 1 97 

Shekel7 
(15) 

8452 36774 390185 4.856 0.165 0.0939 0 98 

Shekel10 
(4) 

8521 36772 390175 5.126 0.074 0.0950 0 100

Hartman
6 (6) 

19452 53792 650475 0.144 0.033 0.0118 23 92 

Hosc45 
(10) 

11140 126139 14020 1.000 0.392 0.0000 0 2 

 
Table 1. Characteristics of optimization algorithm effectiveness 
(GA and GA+ results taken from (Andre et al., 2001), success 
of Edaopt for all cases equal 100%) 
 
found in all 100 attempts) only with one-dimensional F8 and F9 
functions, while with other functions the success is more 
modest and in some cases GA is entirely unable to find global 
minimums. 
Significantly better results are provided by GA+, the “heuristic 
coefficients” of which have been improved. From practice we 
know that with specific test problems these coefficients may be 
fitted in such a way that the global extremes for these functions 
can be found with only a few iterations, while for the 
optimization of other functions the algorithm becomes 
practically useless. Regardless, we will compare the developed 
algorithm exactly with GA+. The table shows data only on the 
functions with a number of parameters up to 10, on which the 
work (Andre et al., 2001) gives GA+ effectiveness data. In 
optimizing F1, F3, Branin, Camel Back, Goldstein Price, 
PShubert2 and Quartic functions, the global minimum finding 
accuracy is higher and simultaneously the number of function 
calculations is 3 to 5.5 times smaller with Edaopt than with 
GA+, that is, the effectiveness of Edaopt is definitely higher. 
This is especially obvious in optimization of the Hosc45 
function, where the location of the global minimum with 
Edaopt requires 9 times less points (function calculations), and 
the percentage of success is 100% for Edaopt compared to 2% 
for GA+, which shows the high reliability of our algorithm, at 
the same time signifying a rather unsuccessful fit of coefficients 
for the GA+ method.  
The obtained results do not, however, show that GA is not 
suitable for global search procedures, quite the contrary, GA, 
simulated annealing and taboo search are among the most 
effective methods, since the finding of a practical solution 
never confines itself to a few search series, but is always 
connected with a thorough and detailed investigation, namely, 
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building of sensitivity curves and evaluation of functioning 
stability in optimality regions, etc. 
It should be noted that it is hard to achieve a 100% success rate 
with stochastic search methods, since there is always a 
probability of carrying out an ineffective search with a limited 
number of points. For example, when attempting to find global 
minimums for the Hartman6 function and Shekel function with 
5 and 7 local minimums in a 4 parameter space with 100% 
success, it turned out that the number of points necessary for 
Edaopt is about ten times greater than for the GA+ method with 
a corresponding 92%, 97% and 98% success. This fact does not 
indicate the superiority of one or the other method, but it shows 
that in order to achieve reliability close to 100%, the minimal 
point number must be of the given order. To achieve a more or 
less objective comparison, it would be necessary to ensure a 
precise coincidence of absolute errors and successes. Since the 
aim was to obtain not a formal numeral evaluation, but a 
qualitative evaluation of the algorithms, such a comparison was 
not carried out. More so since with the Edaopt standard 
interface the search is not terminated on a given precision, but 
on the computer precision (10-byte float point calculation), and 
the only parameter necessary to provide is the maximal number 
of algorithm iterations and no other parameters (“heuristic 
coefficients”) are required. It must be noted that with some test 
problems we had to carry out the comparison with, in our 
opinion, high relative error level, namely, 1%, when the 
deviation of the parameters from their optimal values may be 
very significant. Manipulation with precision may bring a great 
amount of subjectivity into the evaluation. 
In the end it should be noted that the global minimums for the 
Rastrigin and Eglajs functions were located with Edaopt 
without much difficulty. Searching for minimums for the 
Branin function, each of the 3 global minimums was found with 
a 1/3 probability, while for the Camel Back function both 
global minimums were found with a 1/2 probability. 
 
5. CONCLUSIONS 
 
The solution of a wide scope of test problems has shown that 
the developed Edaopt algorithm gives a significantly higher 
reliability in searching for global optimums, in comparison with 
traditional standard stochastic search algorithms, and must be 
considered as an effective alternative. In most cases high 
reliability is obtained with a noticeably smaller computation 
labor-intensity. However this is less important in cases where 
the metamodel approach is applied. In cases where the RSM is 
used, the reliability of the optimum finding arises as the most 
important characteristic of the optimization algorithm. 
Additionally, the Edaopt software allows the user to visually 
orientate himself in the seemingly endless optimization jungle.  
 
6. REFERENCES 
 
Aarts, E. & Korst, J. (1989). Simulated Annealing and 
Boltzmann Machines, J. Wiley and Sons 
Andre, J.; Siarry, P. & Dognon, T. (2001). An improvement of 
the standard genetic algorithm fighting premature convergence 
in continuous optimization, Advances in Engineering Software, 
32, 2001, pp.49-60, www.elsevier.com
Auzins, J. & Janushevskis, A. (2002). New Experimental 
Designs for Metamodelling and Optimization, Proceedings of 
the Fifth World Congress on Computational Mechanics, 
Editors: Mang, H. A.; Rammerstorfer, F. G.; Eberhardsteiner, 
J., 10 pages, ISBN 3-9501554-0-6, Vienna, Austria, July, 2002, 
Publisher: Vienna University of Technology, Vienna 
Auzins, J.; Janushevskis, A. & Onzevs O. (1999). Optimization 
of Multibody Vibration Response by Global Search Procedure. 
In: Proceedings of ECCM -99, 17 pages, CD-ROM. Munich.  
Auzins, J.; Janushevskis, A. & Rikards, R. (2003, a). Software 
Tool Edaopt for Optimization of Complex Systems, Book of 

Abstracts, p. 24-25, XXXI International Conference “Advanced 
Problems in Mechanics”, June 2003, St. Petersburg 
Auzins, J.; Janushevskis, A. & Rikards, R. (2003, b). Software 
Tools for Experimental Design, Metamodelling and 
Optimization, Book of Abstracts, Aifantis E. C. (Ed.), p. 182., 
5th Euromech Solid Mechanics Conference ESMC 5, August 
2003, Giapoulis, Thessaloniki 
Battiti, R. (1994). The Reactive Tabu Search. ORSA J. 
Computing, 6(2), 1994, pp.126-140. 
Dyn, N.; Levin, D. & Rippa, S. (1986). Numerical Procedures 
for Surface Fitting of Scattered Data by Radial Basis Functions. 
SIAM Journal of Scientific and Statistical Computing, 7(2), 
1986, pp. 639-659. 
Friedman, J. H. (1998). Multivariate Adaptive Regression 
Splines. The Annals of Statistics, 19(1), 1998, pp.1-67. 
Horst R.; Pardalos P. M., eds. (1995). Handbook of Global 
Optimization, Kluwer Academic Publishers, New York 
Horst, R. & Tuy H. (1993). Global Optimization: Deterministic 
Approaches, Springer – Verlag, Berlin 
Janushevskis, A.; Lavendelis, E. & Onzevs O. (2000). Method 
for Optimisation of Random Vibrations of Nonlinear 
Mechanical System, In:. Solid Mechanics and its Applications. 
Vol. 73, pp. 159-168, Kluwer Academic Publishers, Dordrecht, 
Boston, London 
Koza J. R. (1993). Genetic programming: on the programming 
of computers by means of natural selection. Cambridge: MIT 
Press 
Mockus J. (1994). Application of Bayesian Approach to 
numerical Methods of Global and Stochastic Optimization, 
Journal of Global Optimization, 4, 1994, pp.347-365. 
Myers R. H.; Montgomery D. C. (2002). Response Surface 
Methodology: Process and Product Optimization Using Design 
Experiments. Wiley, ISBN: 0471412554, New York 
Renders J. M. & Flasse S. P. (1996). Hybrid methods using 
genetic algorithms for global optimization, IEEE Trans 
Systems, Man Cybernetics – part B: cybernetics, 26 (2), 1996; 
pp.243-258. 
Rikards, R. & Auzins, J. (2003). Response Surface Method in 
Optimum Design of Lightweight Composite Structures, In: 
Computational Analysis of Composite Lightweight Structures in 
Aerospace Applications, R. Rolfes and J. Teßmer eds., pp. 111-
120, DLR Institut für Strukturmechanik, ISSN 143-8454, 
Braunschweig 
Simpson, T. W.; Peplinski, J. D.; Koch, P. N. & Allen J. K. 
(2001). Metamodels for Computer-based Engineering Design: 
Survey and Recommendations. Engineering with Computers, 
No.17. 2001, pp.129-150 
Torn, A. & Viitanen, S. (1992). Topological global 
optimization. In: Recent Advances in Global Optimization, 
C.A.Floudas and P.M.Pardalos, editors, pp.385-398, Princeton 
University Press 
Vincent, T. L.;.Goh, B. S. &.Teo, K. L. (1992). Trajectory - 
following Algorithms for Min-Max Optimization Problems. 
Journal of Optimization Theory and Applications, 75 (3), 1992, 
pp. 501-519. 
Waszcyszyn, Z. & Ziemianski L. (2003). Neurocomputing in 
identification problems of structural mechanics, Book of 
Abstracts, Aifantis E. C. (Ed.), p. 299, 5th Euromech Solid 
Mechanics Conference ESMC 5, August 2003, Giapoulis, 
Thessaloniki 

 232

http://www.elsevier.com/

	VERIFICATION OF GLOBAL SEARCH PROCEDURE FOR RESPONSE SURFACE
	Janushevskis, A.; Akinfiev, T.; Auzins, J. & Boyko, A.
	4. ANALYSIS OF OBTAINED RESULTS
	5. CONCLUSIONS
	6. REFERENCES




