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Abstract: This paper uses the artificial neural networks (ANNs) 
approach to evolve an efficient model for estimation of cutting 
forces in copy-end milling. Supervised neural network are 
developed for use as a direct modelling method. The training of 
the networks is performed with experimental machining data. 
The predictive capability of using analytical and neural 
network approaches are compared using statistics, which 
showed that neural network predictions for three cutting force 
components were for 4% closer to the experimental 
measurements, compared to 11% using analytical method. 
Key words: machining, cutting forces, modeling, neural 

network. 
 
1. INTRODUCTION 
 
Ball-end milling cutters have been used extensively in CNC 
machining of critical parts in the aerospace and motor 
industries. The cutting forces that are developed during the end 
milling process, can directly or indirectly estimate process 
parameters such as tool wear, tool life, surface finish, etc. The 
capability of modeling cutting forces therefore provides an 
analytical basis for machining process planning, machine tool 
design, cutter geometry optimisation, and on-line 
monitoring/control. A large amount of work has been carried 
out on force modeling. These modeling methods can be divided 
into three types: Experience modeling, plasticity modeling, and 
geometry modeling (Milfelner, 2002). As the machining 
process is nonlinear and time-dependent, it is difficult for the 
traditional identification methods to provide an accurate model. 
Compared to traditional computing methods the artificial neural 
networks (ANNs) are reliable, accurate and global. Researchers 
(Mursec & Cus, 1999), in their ANN implementations, evolve 
knowledge of the machining environment by training these 
networks on run-time data.  

 
2. PRESENTATION OF THE EXPERIMENTAL 

EQUIPMENT 
 
In order to develop the cutting force component model, 
experimental results were used. The three components of 

cutting force were measured with a piezoelectric dynamometer 
(Kistler 9255) mounted between the workpiece and the 
machining table. The force measurements were sampled at 
20000 points/second, and then digitally low-pass filtered at a 
cut-off frequency of 250 Hz to eliminate the high-frequency 
components resulting from the machine tool dynamics. The 
experiments with the copy end milling cutter were carried out 
on the NC milling machine (type HELLER BEA1). Material 
Ck 45 and Ck 45 (XM) with improved machining properties 
were used for tests. The ball-end milling cutter with 
interchangeable cutting inserts of type R216-16B20-040 with 
two cutting edges, of 16 mm diameter and 10° helix angle was 
selected for machining of the material. The cutting inserts 
R216-16 03 M-M with 12° rake angle were selected. The 
cutting insert material is P30-50 coated with TiC/TiN, 
designated GC 4040 in P10-P20 coated with TiC/TiN, 
designated GC 1025. The coolant RENUS FFM was used for 
cooling. The cutting tool flank wear was measured with an 
instrument microscope of 0.01 mm accuracy. The data 
acquisition package used was LabVIEW. The set up can be 
seen in Figure 1. The experiments were carried out for all 
combinations of the chosen parameters, which are radial/axial 
depth of cut, feedrate, and spindle speed. Other parameters 
such as tool diameter, rake angle, etc. are kept constant.  
Three values for the radial/axial depth of cut have been selected 
for use in the experiments: RD1 = 1d, RD2=0.5d, RD3=0.25d; 
AD1 = 2mm, AD2=4mm, AD3=8mm; d- cutting parameter (16 
mm). In the experiments the following values for feedrate have 
been selected: f1= 0.05 mm/tooth, f2= 0.2 mm/tooth, f3= 0.4 
mm/tooth. Three values of spindle speed have been selected: 
vc1=125 min-1, vc2=185 min-1, vc3=250 min-1. 
 
3. PREDICTIVE CUTTING FORCE MODELING 
 
Artificial neural networks consist of a large number of 
processing elements, called neurons, which operate in parallel. 
Computing with neural networks is non-algorithmic. They are 
trained through examples rather than programmed by software. 
Detailed information concerning artificial neural networks can 
be found in (Lee &Lin, 2001), (Liu & Wang, 1999). 
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Fig. 1. Experimental set-up and general learning architecture
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Fig. 2. Predictive force model topology
 
The Multi-Layer BP network is a supervised, continuous 
valued, multi-input and multi-output feedforward multi-layer 
network that follows a gradient descent method. 
The gradient descent method alters the weight by an amount 
proportional to the partial derivative of the error with respect to 
the weight in question. The backpropagation phase of the 
neural network alters the weights wji so that the error of the 
network is minimized. 
This is achieved by taking a pair of input/output vectors and 
feeding the input vector into the net which generates an output 
vector, which is compared to the output vector supplied, thus 
gaining an error value. The error is then passed back through 
the network (backpropagation process), modifying the weights 
due to this error using the equations. Hence, if the same set of 
input/output vectors are presented to the network, the error 
would be smaller than previously found. For modeling the 
cutting force components, three-layer feed-forward neural 
networks were used (Figure 2). They contained 10 neurons in 
the input layer, and three in the output layer. The number of 
neurons in the hidden layer was varied in different experiments. 
The detailed topology of the used ANN with optimal training 
parameters and mathematical principle of the neuron is shown 
on Figure 2. The ANN were trained with the following 
parameters: type of machined material, hardness of the 
machined material, cutting tool diameter, type of insert, cutting 

speed, feed, radial and axial depth of cutting, tool wear and the 
presence of the cutting fluid. 
Network training involves the process of interactively adjusting 
the interconnection weights in such a way that the prediction 
errors on the training set are minimized. The back- propagation 
algorithm is applied to each pattern set, input and target, for all 
pattern sets in the training set. Since the learning process is 
iterative, the entire training set will have to be presented to the 
network over and over again, until the global error reaches a 
minimum acceptable value. The basic goal in training any 
neural network is to minimize the overall error of the network. 
Matlab Network Tool Box and Thinks-Pro software were used 
as a platform to create the networks. 
Figure 3 shows the uniform falling of the value of all errors 
(ETst, ETstMax, ETrn, ETrnMax) with the number of iterations 
during the training and testing process for described network 
configuration (Figure 2). The smallest error of testing (ETst) is 
reached at iteration 1780. It can be seen in the Figure 3 that 
errors converge not to zero but to 0.04 (4%). This is caused by 
the presence of some contradicting examples in the training set. 
The prediction of a network trained with tanh transfer function 
and optimum parameters of 7-6 hidden nodes, learning rate 
(0.1) and a momentum rate (0.001) are shown on Fig. 4. The 
predictions of a non-optimum networks with non-optimal 
parameters are also shown in the same figure. 

 
Fig. 3. Decrease of errors during supervised training of neural network 
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Fig. 4. Decrease of errors during supervised training of neural network 
 
The ANN registers the input data only in the numerical form 
therefore the information about the tool, cutting insert and 
material must be transformed into numerical code. The type of 
the cutting insert is indicated with an 8-digit systematization 
code containing the data on the cutting insert shape, rake angle, 
free angle, tip radius, base material, cutting insert coating and 
length of the insert cutting edge. 
 
4. DISCUSSION OF RESULTS 
 
Verification experiments are conducted to evaluate feed 
forward and Radial Basis networks. It is found that the Radial 
basis network is superior. The radial basis neural networks 
require more neurons than the standard feed forward neural 

networks with the Back Propagation (BPN) Learning Rule, but 
conceiving of radial basis neural networks lasts only a part of 
time necessary for training of the feed forward network. The 
feed forward neural networks give more accurate results, but 
they require more time (70%) for training and testing. An 
extensive number of tests were made on the milling machine to 
confirm the neural model with different cutting parameters. 
This chapter presents the results of experiments and the 
comparison and analysis of results between the experimental 
and ANN model depending on the cutting parameters. The 
results and/or the values of cutting forces are graphically 
represented by means of diagrams depending on the angle of 
rotation of the milling cutter (Fig. 5 and 6). By comparing the 
results predicted by ANN with the results of experiments the 
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Fig. 5. Representation of measured (Fx-M, Fy-M, Fz-M) and predicted (Fx-ANN, Fy- ANN, Fz- ANN) cutting forces. Copy-end 
milling cutter R216-16B20-040, cutting insert R216-16 03 M-M GC 4040, material Ck 45, milling width RD=4 mm, milling depth 
AD=2 mm, feeding f=0.05 mm/tooth and cutting speed vc=125 min-1 
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Fig. 6. Representation of measured (Fx-M, Fy-M, Fz-M) and predicted (Fx-ANN, Fy- ANN, Fz- ANN) cutting forces. Copy-end 
milling cutter R216-16B20-040, cutting insert R216-16 03 M-M GC 4040, material Ck 45, milling width RD=8 mm, milling depth 
AD=2 mm, feeding f=0.4 mm/tooth and cutting speed vc=125 min-1 

 
following was established: the values from prediction coincide 
well with the values from experiments and in addition, the 
process of the change of the cutting force with respect to the 
angle of rotation of the milling cutter and the amplitude agree 
well. Fig. 5 shows the comparison of the predicted forces and 
the measured forces. Also the comparison of maximum values 
of the cutting forces from simulation with the experimental 
values in case of different cutting conditions was made. 
 
5. COMPARISON OF THE NEURAL NETWORK-

BASED MODEL TO THE ANALYTICAL 
MODEL 

 
In this paper, supervised neural networks are used to 
successfully estimate the forces developed during end milling 
process. The comparison between the predicted cutting forces 
and measured cutting forces was made (Cus & Balic, 2000).    
It can be claimed that the comparison of the results obtained 
from the neural model and of the experimental results confirms 
the accuracy of the model for predicting the cutting forces. By 
using a multi-layer perception with backpropagation training 
method, the neural network is trained to an accuracy of ±2% 
error for all three forces. In testing the model, the three force 
components in oblique cutting were predicted to an accuracy of 
±4%. An effort is made to include as many different machining 
conditions as possible that influence the cutting process. Due to 
high speed of processing, low consumption of memory, great 
robustness, possibility of self-learning and simple incorporation 
into chips the approach ensures estimation of the cutting forces 
in real time. Future work could be directed to application of 
other preference models and neural networks to machining 
process optimization and extension of the proposed approach to 
adaptive control of machining operations or on-line adjustment 
of cutting parameters based on information from sensors. 
 
6. CONCLUSION 
 
In this paper, supervised neural networks are used to estimate 

 the forces developed during end milling process. The 
comparison between the predicted cutting forces and measured 
cutting forces was made.  
It can be claimed that the comparison of the results obtained 
from the neural model and of the experimental results confirms 
the efficiency and accuracy of the model for predicting the 
cutting forces.  
In testing the model, the three force components in oblique 
cutting were predicted to an accuracy of ±4%. 
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