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Abstract: The energy flow modelling in automotive propulsion 
systems aimed to provide base data for the choice of the 
differential parameters in consideration of the impact on the 
lateral dynamics of the vehicle is presented in the paper. 
The characteristics of the differential in the torque transmission 
chain are concerned. Description of the characteristics and 
operational conditions of the limited slip differential gear train 
is given. The virtual differential (algorithm of energy flow) has 
been provided. 
The topics of this paper have been developed in co-operation 
between Chalmers University of Technology, Göteborg, 
Sweden, Tallinn Technical University and Estonian Agricultu-
ral University. 
Key words: modelling, planetary gear train, limited slip, torque 
transmission, energy losses. 
 
1. INTRODUCTION 
 
Development of the control unit for the vehicle (its neural 
system) to improve the safety characteristics needs to control 
the power flow from the engine to the driving wheels.  
This paper concerns the characteristics of the differential in the 
torque transmission chain.  
An essential disadvantage of the conventional differential has 
been noted: in case one wheel of the vehicle slips on a surface 
with low friction, it is likely to bring the vehicle to halt. In the 
above case, the conventional differential is unable to transmit 
the necessary torque to the other wheel. The limited slip 
differential can transmit more torque in this case but a decrease 
in the steering qualities will follow due to the increased 
understeering.  
The aim of this work is to investigate the power flow from the 
engine to the driving wheels in consideration of its impact on 
the lateral dynamics of the vehicle. 
 
2. NOTATION AND TERMS 
 

 

main symbol 
 

quantity, explanation unit 

A area m2

B track m 
F (peripheral) force  N 
G gravitational force N 
g acceleration of gravity m/s2

L wheel base m 
J, [J] mass moment(s) of inertia  kgm2

[JC] constraint Jacobian matrix  [m] 
P pitch point  W 
r, R radius  m 
∆r  force pole offset  m 
s slip  
T torque  Nm 
∆T drag or idling torque  Nm 
V translational velocity  m/s 
∆V constrained velocity  m/s 
δ angle of steering rad 

η  efficiency  
µ  coeff. of engagement  
ω, Ω rotational velocity  rad/s 
ρ  air density 

3m
kg  

 dt
dx  time derivative (any variable)  any/s 

{} column vector 
[ ] matrix 

 
 

subscripts 
 

 

1... j identifier of shaft 
a aerodynamical 
constr constraint action 
d special identifier of drive wheel 
h special identifier of friction 
inert inertial action 
mod modified (due to losses) 
pc special identifier of planet carrier 

pw special identifier of planet planet wheel 
sw special identifier of sunwheel 
  

Differential: A mechanical system with two rotational degrees 
of freedom, where the gears are mostly arranged as a planetary 
system. 
Limited slip differential: A differential, where the internal 
relative motion is subjected to torque losses. 
Virtual Differential: A Generalized Algorithm for simulation of 
speed and torque distribution, thus also power flow, in a 
differential. 
Lateral Dynamics of Vehicles: Dynamics of vehicle handling, 
focusing on lateral translation and yaw. 
 
3. DESCRIPTION OF A NEW APPROACH FOR 

ANALYSIS OF DIFFERENTIALS 
 
3.1. Geometrical interpretation gear tooth losses 
At modelling of the differential the influence of gear tooth 
losses can be considered.  Here, the loss of free torque can be 
given as follows: T=Ft ωr , where Ft denotes the tangential 
contact force component at pitch radius . ωr
Thus, in Figure 3.1 is an illustration of a pair of teeth in contact 
at one of the end points of the line of contact. 

 
Fig. 3.1. Loss due to friction at gearing, where, - pressure 

angle; , - denote the diameters of the pitch circles of 
ωα t

1ωd 2ωd
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the driving and the driven gears, respectively; 1F - the 

theoretical loss free normal contact force, ∑1F - the resultant 

contact force in the friction-related case, 1hF - the friction 
force; P - the pitch point, P1 - the force pole, where the 
tangential force component appears to act. 
The distance between P and P1 is called the force pole offset 
and is denoted . In the case of friction, the magnitude of 
torque on the driving (subscript 1) and the driven (subscript 2) 
wheels can be expressed as: 

ωr∆

T1=Ft( + ), 1ωr ωr∆

T2=Ft( - ), 2ωr ωr∆
(1) 

 

where is the force pole offset due to friction in the gear 
mesh. If either one of the wheels is internally geared, the 
corresponding pitch radius should be considered to be negative. 

ωr∆

The relationships in Equation 1 may be transformed to an 
expression for the traditional efficiency η , where subscript 2 
then identifies the internally geared wheel, if any, which calls 
for the lower minus sign: 

)11(1
21 ωω

ωη
rr

r ±∆−≈ . (2) 
 

The problem of the efficiency of epicyclical gear trains 
considering the influence of the number of teeth was an early 
stage treated by Jakobsson (1966). 
 
3.2 . Virtual shaft extension 
This concept at power flow analysis has earlier been used by 
Mägi in his dissertation in 1974, Figure 3.2. is important in the 
description of non-parallel shaft gearing, allowing generalised 
definition of common positive sense for speeds and torques. 
 

 

Fig. 3.2. Virtual shaft extensions (broken lines) for bevel wheel 
planetary system, where pc is the planet carrier, pw is the planet 
wheel and sw1/sw2 are sun wheels. 
 

Speeds and torques of all externally visible real and extended 
shafts, as shown in Figure 3.2, might be assigned a common 
positive sense. 
 
3.3. Lagrange multiplier approach 
By the utilization of the Lagrange multiplier theorem (Mägi et 
al., 1998) the system constraint Jacobian matrix is of 
fundamental importance. This can easily be compiled so that it 
fully defines the kinematics of the model. This approach 
implies that originally all shafts of a differential or a planetary 
system in general may rotate independently. Existing 
interconnections, as gear meshes, introduce constraints to the 
motion. 

Further, the constraint approach implies in the present context 
that the difference between the relative peripheral pitch 
diameter speeds in each gear mesh between two mating gear 
wheels, ∆V, is zero. For instance, an internal motion constraint 
in the system depicted in Figure 3.2, contributes to the Jacobian 
matrix for mesh  j between shafts pw and sw1 by the following: 
 

∆Vj = (ωpw −ωpc )rpw + (ωsw1 −ωpc )rsw1 = 0, (3) 
 

where r is the pitch radius of the wheel, rpw denotes the left 
planet wheel that mates rsw1 and ω  is the rotational speed of 

mates r

the shaft in consideration. rpw denotes the left planet wheel that 

sw1. V∆  is the (vanishing) difference in relative pitch 
circle veloci the mesh considered. 
Arranging all differences of relative velo

ties at 
cities, ∆V  , to a vector j

{ }V∆  and velocities of all shafts to another vector { }ω , the 
tibility at all constraints could be summarised from all 

equations of the type shown in Equation 3 to: 
 

compa

{ } [ ]{ } { }0==∆ ωCJV , (4) 
 

where [ ]CJ  is the Jacobian m trix of the internal motion 
ints 

a
constra in the system, containing various pitch radii as 
matrix elements. As Equation 4 equals zero, all radii may be 
premultiplied by some constant, allowing the radii to be 
replaced by the numbers of teeth of the wheels considered. The 
contribution Tconstr , from the constraint forces, Ft , or shorter 
just F, to the torque equilibrium for each shaft is according to 
the Lagrange multiplier theorem: 
 

{ } [ ] { }FJT T

C= . constr (5) 
 

In full dynamics situations, the inertial ef  must be fects
included. The change of rotational speeds, i. e., rotational 
acceleration, is in the sense of d‘Alembert equivalent to the 
action of an external torque inert PT J ω= − & , where PJ  is the 
polar mass moment of inertia lar subsy m, and of the particu ste
ω&  is its angular acceleration. For all rotating elements the 

ertial torque vector is: in
{ } [ ]{ }Pinert
T J ω= & , (6) 

 

where [ ]PJ  is the diagonal matrix of all polar mass moments of 
ndinertia a  { }ω& is the vector of all angular accelerations. 

The total fu  dynamic but loss free equilibrium is thenlly  given 
by: 

{ } { } { } { }→=++ 0inertconstr TTT  

{ } { } { })(tTTT constrinert =−− , 
(7) 

 

where { } { })(tTT =  is the prescribe e dependent external 
vector. Th

d tim
torque e constraint conditions, eq. 3.4, may be 
differentiated once, yielding: 

[ ]{ } { }0CJ ω± =& , (8) 
 

ll equilibrium and compatibility equations, eq. 4 through eq. 9 

{ }

A
could now be collected to form a common set of equations: 

[ ] [ ] { } ( ){
[ ] [ ]

}
{ }0 0

P C

C FJ

T T tJ J ω ⎧ ⎫⎡ ⎤ ⎧ ⎫⎪ ⎪ ⎪ ⎪=⎢ ⎥ ⎨ ⎬ ⎨ ⎬
⎪ ⎪⎢ ⎥ ⎪ ⎪⎩ ⎭⎣ ⎦ ⎩ ⎭

, (9) 

 
he Lagrange multiplier approach eliminates the need for the 

 to discuss 

. THE CHARACTERISTICS OF A VEHICLE WITH 

 
.1. Tractive effort characteristics 

l velocity of the driving 

&

T
detailed derivation of torque equilibrium equations. 
The simplifications, described enabled the research
the modules of the model in a systematic way. Thus, we can 
also complete the generalised model of the vehicle, which 
contains different modules. The model describes the 
distribution of the energy flow. 
 
4

THE LIMITED SLIP DIFFERENTIAL 

4
At any radii of cornering, the rotationa
wheels of a vehicle with a common differential is adjusted to 
the steering radius. The application of a planetary gear train 
(locked differential) leads to resistance at cornering. As a 
matter of fact, the coefficient of efficiency of the common 
differential is relatively high. Thus, in case the common 
differential is applied the torques of the driving wheels are 
approximately equal. In a loss-free case not considering gear 
ratio at differential, a certain correlation is noticed:  Tin= Tout1+ 
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Tout2 , where: Tin denotes the input moment of the differential 
gear train, however, Tout1 and Tout2 are the output torques on the 
corresponding wheels (Figure 4.1). Besides, Tmin =Gfmin rd 
where: G is the gravitational force on the driving wheel and 
fmin denotes the coefficient of friction between the driving 
wheel (radius rd ) and the road surface calculated on the wheel 
with a lower value of friction, on the assumption that an equal 
force of gravitation has an impact on the driving wheels. 
The highest torque in case of a common differential can be 

Here, the locked differential has taken the form of a planetary 

in min max d min+ Gfmax ), (10) 

whe l with her value 

differential with 

e torque ratio at differential can be expressed 

given as follows:        Tin=2Tmin . 

gear train as a result of locking, thus enabling the transmission 
of a higher torque on the road: 

T = T + T = r  (Gf
 

re: T
 

a higmax denote the torque of the whee  
of friction and the coefficient of friction fmax on the road 
surface. Here, the driving wheels with equal rotational 
velocities provide a disadvantage at cornering. 
 

As a rule, in most street and road vehicles, the 
a relatively high coefficient of efficiency has been widely 
applied. In extreme situations (e.g.  fmin << fmax ), it is essential 
to increase the torque on the driving wheels. Here, we have 
tried to find a reasonable compromise between the increasing 
tractive effort and understeering of vehicle. To achieve that, we 
have tried to limit the relative mutual rotational velocity of the 
driving wheels. 
 

Theoretically, th
by formula (11): 

1

2

T
Tk = , (11) 

where T2 and T1
 denote the torques of each drive wheel at the 

ential, the 

e driven on rough 

 slip 

agrange multiplier approach has 

the torques of the 

speed losses can be calculated by the 

.2. Steering characteristics 
road vehicle at cornering at 

o) - cot(δi ) = B/L , (12) 
 

where, the s outer and in heels at 

teristics 

eous centre and Ω  is the 

t 

beginning of the beginning switch-off of the brakes. 
In case of the application of the limited slip differ
highest torque value can be expressed as the following 
 correlation:        Tin=Tmin (1+ k). 
 

In case of jeeps (off-road vehicles) that ar
roads, higher torque values are needed. It is possible to obtain 
higher torque values by decreasing the cornering abilities. 
A. Torm (1963) has carried out tests to study the limited
differentials in tractors. According to the test results, a 
differential with the torque ratio 2,0 is not likely to increase the 
cornering radius (tractor DT-20). In case a trailer is used in a 
cultivated and a stubble field, with the maximum angle of the 
front tyres, the cornering radius will increase by 10-20% and 
the total motion resistance will grow by 11-17%. However, it is 
not reasonable to apply a differential with a torque ratio over 
2,5…3,0. 
 

By Mägi et al., (1998) the L
been applied, which eliminates the need for detailed torque 
equilibrium equations. This is a considerable simplification of 
the planetary gear train analysis. 
 

The correlation of the velocities and 
shafts (rotating elements) of each transmission unit can then be 
automatically be formulated, presented in the form of a matrix 
and solved by the computer program. This will enable us to 
calculate the values of the torques and velocities of each shaft 
in the whole system. 
 

The torque and the 
Lagrange multiplier technique. The transmission systems with 
more than one input and/or an output shaft as well as the 
epicyclical trains can be calculated. Besides, the possible 
over-constrained elements of the transmission system can be 
detected. 
 

4
Below, the characteristics of the 
low velocities have been examined (with no centrifugal force). 
At low speeds, a simple relation between the direction of 
motion and the steering wheel angle has been noticed. The 
prime consideration for the design of the steering system is the 
minimum tyre scrub at cornering. Therefore, at cornering all 
tires should be in pure rolling without lateral sliding. To satisfy 
this requirement, the wheels should follow the curved path with 
different radii originating from a common 
centre C (Figure 4.1). The steer angles δo and δi should satisfy 
the relationship: 

cot(δ
ubscripts o and i denote ner w

cornering. The steering geometry that satisfies the above 
equation is usually referred to as the Ackermann steering 
geometry and is valid as a theoretical reference case where 
sideslip of wheels is disregarded (Wong, 1993). 
Model treatment and influence to the steering charac
have been handled in Resev (2002).  
In Figure 4.1, C is also an instantan
rotational velocity relative to it. The steering angles of the front 
wheels δo and δi have been approximated to the longitudinal 
axis of the vehicle used in the calculations:  δ =0.5(δo + δI) .  
According to the value of the under steer coefficien
Resev (2002) or the relationship between the slip angles of the 
front and the rear tires, the steady-state handling characteristics 
may be divided into the three categories: neutral steering, 
understeering and oversteering. 

Ω
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V
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δo

Oversteering area

Understeering area
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Fig. 4.1. The power and steering characteristics of the vehicle. 
Where, B is the track (or tread) of the vehicle, L is the wheel 
base, F - force, V - velocity, whereas the subscripts o (outer) 
and i (inner) denote the relative displacement of the 
instantaneous centres C. r denotes the resistance and 
Ω - rotational velocity of the vehicle. 

the design of the differential it isIn  essential to follow the 

erential is expected to provide the vehicle with the 

ence the steering of the car 

metrical limited slip acts 

.3. Components of the virtual differential model 
 different 

angle of the front wheels.  

principles: 
• The diff
utmost neutral steering qualities. 
• The characteristics that influ
should change the steering for more neutral so that it 
contributes to the steering qualities. 
Constructively can be a shifted sym
like an asymmetrical differential in a curvilinear trajectory. 
 
4
The systems studied have been composed of the
model components. In the description of the model components 
we need an analysis of the general process of motion. The 
vehicle moves along the non constant radius by the changing 
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The lateral dynamics of the limited slip differential can be 
divided into certain stages. As for the characteristics of the 
differential, the most significant factor here is the constraint on 
the inner slip.  
This constraint may have a variable or constant impact on the 
torque ratio. In case it is variable, it can be load- or velocity 
proportional. Let us take a limited slip differential, which is 
load proportional. The difference between the velocities of the 
drive wheels: io VVV −=∆ . 

 

Fig. 4.2. The torque ratio at differential of the motion process 
on a curvilinear trajectory. Where, T – the drive wheel torque, 
∆V - the relative velocity of the drive wheels. 
The lateral dynamics of a vehicle equipped with a differential 
of the kind undergoes the following processes: 
1. The transition from the curvilinear trajectory to the linear 
one. 
2. The transition from the linear trajectory to the curvilinear 
one with a variable radius: 
• The stage of the relative small torque of the driving wheels– 
the differential is still locked (1-2i or 1-2o, Figure 4.2). The 
vehicle is moving along a curve - the rotational velocities of its 
driving wheels are equal (ωι =ωο). The inner wheel of the curve 
slips back in relation to the road surface, whereas the outer 
wheel slips forward in the direction of motion. However, both 
driving wheels slip back as a result of the motional resistance. 
• The intermediate stage – relative slip is noted in the friction 
elements of the differential (2i-3i or 2o-3o Figure 4.2). Here, 
we can define the unlocking phase of the differential, which is 
characterized by the transition from the static friction to the 
dynamic friction. As a rule, the transition is gradual, dependent 
on the surfaces of friction. 
• The stage of the large angle of the front wheel – the 
differential has been unlocked (at point 3i or 3o, Figure 4.2). 
The further increase in the torque of the driving wheels will not 
bring about an increase in the relative torque ratio. 
These stages can be interpreted as modules for the vehicle 
movement models. 
For the modelling of the limited slip differential we need speed 
and load characteristics of the vehicle as the initial parameters. 
The general equations of the limited slip differential for the 
simulation of the lateral dynamics of the vehicle (Figure 4.1) 
can be correspondingly divided into equilibrium, compatibility 
and constitutive relations. 
The equilibrium of the force and torque has been generally 
shown as 0=ΣT , 0=ΣF . 
We can overcome the resistance at constant movement by 
making use of the tangential force of the driving wheels: 
 

Fr  = Fi  + Fo , (13) 
 

As a rule can be given generally as: 

roi FFFdt
V −+=dm , 

where m denotes mass of the veh e and Fr  is t istance of 
otion. 

(14) 
 

icl he res
m
The compatibility of the geometrical relations can be given as: 
for the outer and inner drive wheels subsequently: 

oo Vsr =− )1(ω  

ii Vsr =− )1(ω , 
(15) 

 

where s denotes slip. Acco ing to Figure 4.1, for the 
curvilinear motion of the vehicle can be given as

rd
: 

ii sBRV −
⎟
⎠

⎜
⎝ − 15.0

 (16) 
 

The constitutive relations of the limited slip differ

oo sBRV
=⎞⎛ +

=
15.0

ential for the 
tangential force relatively of the drive wheels ca expressed 
as the following analytical approxim

−

n be 
ation: 

Fi,o = 
π
µ

2
mg

arctan (20si,o). (17) 

The motion resistance: 

Fr = 2

2
VAkg a

ρ
+ , mkr±

lling resistance, ka is the coefficient of 
aerodynam sistance, A is a vehicle fron a, 

(18) 
 

where kr denotes the ro
ic re t are µ  is 

coefficien eel engagement  road and g celeration 

ial are elaborated. Based on these equations, the 
the vehicle model could be derived.  

the Nordic Council of Ministers, admi-
ute in Stockholm. The above 
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t a wh on is ac
due to gravity. The overwritten relations include the main 
parameters have been modelled of the design differential. The 
motion process has simulated by MatLab. 
At the stage of modelling it is important to follow the velocity 
parameters and record the load characteristics, thus the power 
flow models from the engine to the driving wheels could be 
improved. 

CONCLUSION 
The basic equations for the description of the module of the 
virtual different
module system of 
The model of the differential constitutes a part of the module 
system of the vehicle model.  
The proposed model enables to observe and guide the distri-
bution of the energy flow.  
The model enables us to follow and change the parameters of 
vehicle involved in. 
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