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       Abstract: This paper presents finite element based 
numerical stability analysis of thin-walled beam structures. 
Using the linearized virtual work principle with assumption 
of large displacements, large rotation but small strains the 
finite element equation is derived. Effects of cross sectional 
shear deformations are also taken into account. To include 
large rotation effects the non-linear displacement field of 
cross-section is used. A new two-node shear flexible finite 
element with seven degrees of freedom per node is 
developed. Complete exact 14×14 elastic and geometric 
stiffness matrices are evaluated. A very own computer 
program THINWALL SHEAR is developed. Obtained 
solutions are for verification compared with analytical and 
numerical results of the other authors available from 
literature. 
Key words: large displacements, large rotations, shear           
deformations, thin-walled beam  
 
1. INTRODUCTION  
 
Tendency to an optimal construction and to reduction of 
product cost appeals for using thin-walled structure 
members because they offer a high performance for a 
minimum weight. Complexity of their behaviour especially 
from the view of stability loosing, imposes numerical 
modelling as adequate method because theoretical solutions 
are limited on cases of simple geometry.  
Linear stability analysis treats stability problem as an 
eigenvalue one and such approach try to determine the 
instability load in a direct manner without calculating the 
deformations. A critical buckling load belongs to the lowest 
eigenvalue and corresponding eigenvector represents a 
critical or buckling mode. Such analysis supposes an ideal 
structure and loading condition what in other words means 
that eminence of deformations before reaching buckling 
load are not possible. Prediction of critical buckling load is 
usually also prediction of limit load carrying capacity.  
Stability analysis concerning large spatial rotation is very 
complex problem because of non vectoral nature of large 
rotations. Using standard linear displacement field torsional 
moment is of semitangental and bending moments are of 
quasitangental character so they induce non compatible 
moments during large spatial rotation. In this work non-
linear displacement field is used which include large 
rotation effects. Derived geometric stiffness matrix of thin-
walled beam finite element supposes all internal moments 
of semitangental character. 
This work also proposes that beam member is prismatic 
and straight, material is isotropic, cross section is non-
deformable in his own plane but it is possible to warp, 
external loads are conservative and constitutive equations 
are linear.  

2. BASIC CONSIDERATIONS  
 
2.1 Nonlinear displacement field  
Cross section displacements consist of seven components, 
three translational , three rotational components , ,o s sw u v

, ,x y zϕ ϕ ϕ and also seventh component θ of cross sectional 
warping.  
In used right handed Cartesian coordinate system (z, x, y), 
axis z coincidents with beam axis passing through the 
centroids O of cross sections. Coordinate axes x and y are the 
principal axes of inertia of cross section.  
Total displacement field is: 

{ }T = + + +U % % % ,uk w w u u v v

ωθ

   (1) 
where w, u and v are linear displacement field components:  
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Using non linear displacement field corresponding Green-
Lagrange strain tensor is: 
                     ≅ + + %ij ij ij ije eε η                   (4) 
with components defined as (Chang et.al., 1996.): 
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Cross sectional stress resultants generally consist of: axial 
force Fz, shear forces Fx, Fy, torsional moment Mz, bending 
moments Mx , My and bimoment Mω : 
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The torsional moment is sum of St.Venant or uniform 
torsional moment and warping or nonuniform torsional  SVT
moment Tω .  
Due to restricted cross-sectional warping an additional 
component known as Wagner coefficient (Yang & Kuo, 
1994) is occurred and it can be expressed as : 
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or: 
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Detailed expressions of coefficients , , ,z x y ωα α α α can be 
found in reference (Kim et.al., 1994). 
In the case when shear deformation due to and T,x yF F ω  
are taken into account we have: 
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In the plane x-z, according to Fig. 1, we have: 
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and analogously follows for bending in z-y plane: 
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and for torsion: 
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In relations above , ,xz zy ωγ γ γ  are average values of shear 

deformations; ,xz zyτ τ  are average values of shear stresses; 
, ,x yA A Jω  are shear areas with respect to x, y, ω 

and , ,x yk k kω are flexible shear coefficients.  
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Fig. 1. Shear deformation in x-z plane 
Flexible shear coefficients can be evaluated as: 
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where , and ω are first moments of area with respect to 
x, y and ω defined as: 
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2.2 Linearized virtual works principal 

Proposing equilibrium between internal and external forces 

follows (Turkalj et.al., 2003 a, b):  
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Equation (14) is known as linearized principal of virtual 
works and it can be also rewritten as (Bathe, 1996): 
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where elastic potential energy of internal forces is: 
                          , 

geometric potential of initial forces is:              
           σδ δη δ δ= + −∫ ∫ ∫% % , 

virtual work of external forces is: 
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and Π  is total potential energy. 
Involving (1)-(6) into equations for UEδ and UGδ gives: 
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3. THIN-WALLED BEAM FINITE ELEMENT 
 
On the Fig. 2. the thin-walled beam finite element with 14 
degrees of freedom is presented (Turkalj & Brnić, 2000; 
Turkalj et.al., 2003 c). The nodal displacement vector 

and force vector of an arbitrary eth element with the 
end nodes A and B, are: 
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Fig. 2. Thin-walled beam finite element 
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For one finite element follows equilibrium equation:  
                  ( )e e e

E G
e+ =k k u f .                                 (20) 

where e
Ek and are elastic and geometric parts of stiffness 

matrix in local coordinate system which are obtained by 
solving integrals for

e
Gk

UEδ and UGδ ( Turkalj et.al., 2002).  
Interpolation functions for displacement components w are 
linear and for u, v and φ displacement is used cubic 
interpolation.  
For the whole construction equilibrium equation using 
assumption of proportionality of loading is: 
                             ( )ˆ

E Gλ+ =K K U F ,                             (21) 

where KE is elastic stiffness matrix of construction, KG is 
geometric stiffness matrix of construction, U and F are 
vectors of incremental nodal displacements and nodal forces 
of construction and λ  is load parameter. Eigenvalues of 
equation (21) λ1,..., λn, presents critical buckling loads. Only 
the first value λ1 is of practical interest (Mihanović, 1993). 
 
4. EXAMPLE 
 
Computer program THINWALL-SHEAR developed on the 
basis of the presented theory is tested on a two examples. 
 
4.1 Torsional-flexural buckling of cantilever 
Cantilever of unsymmetrical cross section, loaded with axial 
force at centroid is shown on Fig. 3.  
Material and geometrical parameters are: 
length                                   l = 200 cm; 
modulus of elasticity           E = 30000 Ncm-2;  
shear modulus                     G = 11500 Ncm-2;   
shear center coordinates:     xs = 1.58943 cm;  
                                             ys = -2.57228 cm;  
moments of inertia:              Ix = 114.812 cm4, 
                                             Iy = 7.6048 cm4; 
warping moment of inertia  Iω = 70.9687 cm6;  
torsional moment of inertia   J = 0.666667 cm4;  
shear factors:                        kx =5.2339,  
                                             ky =1.794438,  
                                            kω = 0.01699;  
Wagner coefficients:           αx =5.66166 cm,  
                                            αy =11.0599cm,  
                                            αz =24.445 cm2,  
                                           αω = -0.558603.  
Values for critical buckling load Fkr evaluated by computer 
program THINWALL-SHEAR are compared with beam finite 
element results of (Kim et.al., 1994), and ABAQUS (Kim 
et.al., 2001) results who idealized cantilever with 1600 shell 
finite elements.  
Table 1 shows very good accuracy of this paper results 
comparing with results of the others. 
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Fig. 3. Axially compressed cantilever of unsymmetric cross  
section from example 4.1 
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This paper Kim et.al.  

ABAQ
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 1 13.9958 

 2 13.8986 

 4 13.8930 

13.9017 14.0230 

 
Table 1. Values Fkr (N) for cantilever from example 4.1 
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Fig. 4. Axially compressed simple beam of doubly 
symmetric cross-section from example 4.2 
 
4.2 Flexural buckling of simply supported beam 
Simply supported beam has doubly symmetric cross section 
The beam is axially loaded with axial force F . Due to 
doubly symmetry of cross section the only possible 
buckling mode is flexural. 
The relevant material and geometrical properties for beam 
are: 
length                            l = 100 cm; 
modulus of elasticity   E = 2,1·107 Ncm-2; 
shear modulus             G = 80,77·105 Ncm-2;   
moments of inertia:      Ix = Iy = 50 cm4;  
cross section area         A = 5 cm2. 
In table 2. computer program THINWALL-SHEAR results 
are compared with numerical results,  and Timoshenko 
analytical results by (Kim et.al., 1994)  for different values 
of shear  coefficients kx = ky.  
From the table 2. for all range of values for shear 
coefficients kx a very good coincidence of results can be 
seen.  

This work 

No. elem. 
 

x
kr

k F
GA

 
2 4 

Analytic 

 

Kim 

et.al. 

0 1.04410 1.03684 1.03630 1.03641 

0,5 0.71541 0.69059 0.69087 0.69440 

1 0.53516 0.51548 0.51815 0.52112 

5 0.17193 0.16879 0.17272 0.17326 

10 0.09254 0.09156 0.09421 0.09439 

100 0.00992 0.00999 0.01026 0.01026 

10000 0.00010 0.00010 0.00010 0.00010 
 

 
Table 2. Values  Fkr (N) for flexural buckling of beam 
under axial load (·106N) 
 

5. CONCLUSION  
 
Numerical models are only successful and cost low 
alternatives for analytical modeling which are applicable only 
in the case of very simple geometry of structure and for  
experimental observations of stability of real constructions 
which are of the best accuracy but of the highest price.  
Presented numerical algorithm, based on the finite element 
method, includes large displacements and large rotations and 
also cross sectional deformation effects. Coincidence of 
results gotten by testing of developed computer program 
THINWALL-SHEAR on the few typical examples, with 
results of other authors available from literature, guarantees 
his successful appliance to the other problems of more 
complex constructions. 
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