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Abstract: The common methods of condition monitoring are 
typically sufficient for estimating the condition of machines. 
Sometimes there are however weak signals in vibration that do 
not contribute much to typical condition monitoring measurement 
parameters, like often happens in the case of cavitation or for 
example in the case of early bearing faults. In such case 
differentiation of vibration signal may help. 
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1. INTRODUCTION 
 
The methods of early diagnosis of machine faults are constantly 
being developed and enhanced. One of the main goals of machine 
diagnostics is the discovery of faults in their early stages, well 
before they lead into failure. 
The main method used in diagnostics is vibration-based 
approach, which allows evaluating machine’s condition as a 
whole and also condition of its elements separately. The 
magnitude of vibration is mostly described by deflection, velocity 
and acceleration, i.e. x ≡ x(0), dx/dt≡ x(1) and d2x/dt2≡ x(2).  
The aforementioned parameters have alongside their benefits also 
some insufficiencies. In some cases faults are difficult or even 
impossible to detect using these parameters. This is often the case 
with cavitation and this is where differentiated signals become 
useful. 
Perhaps the biggest problem in detecting cavitation is that it’s not 
always accompanied by increase of overall vibration levels. 
Sometimes the rotation speed is small and although machine is 
cavitating vibration levels don't change. Often the vibration 
amplitudes created by cavitation are too small to increase the 
vibration level of machine. In many cases listening to vibration 
signal may hint the presence of cavitation, but measurements 
don't. Prof. Sulo Lahdelma (University of Oulu) has shown in his 
works (Lahdelma, 1995, 1996, 1997, 2002 ) that such phenomena 
can be discovered with the help of higher order differentiation. 
An algorithm has been developed in the Department of 
mechatronics of TTU based on the work of S.Lahdelma to 
calculate higher differentiation (and integration) orders of 
vibration signals and to investigate cavitation. Also a test rig has 
been built to run tests on smaller pumps with different setups and 
conditions. The idea to investigate pumps was suggested to us by 
Prof. S.Lahdelma who had used this method for cavitation 
detection in turbines. 
 
 
2. CALCULATION OF DERIVATIVES 
 
Mathematical description of vibrations is often done using 
complex exponentials. Differentiation can be expressed by the 
base function is in the form of  

 
          x(t)= Xeiωt   (1) 
 
The derivative x(α) of a function (1) can be defined as 
 
     x(α) =ωα Xei(ωt+απ/2)   (2) 
where 
parameters α (any real number), ω and X are constants, e is a 
Napier number, t is a time variable. 
From formula (2) it can be seen that in the derivative the quantity 
X is multiplied by ωα and phase angle varies proportionally to the 
order of derivative α that is by απ/2. 
 
Taking into account that 
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we can write formula (2) as follows 
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Let us look at a simple example of how useful derivatives can be 
in detecting weak but intensive signal components. We present a 
simulated signal where we have dominating vibration of 3 Hz 
with the amplitude of 10 units, which is complimented by higher 
frequency vibration of 60 Hz with amplitude of 1 unit. Inside this 
vibration we have hidden an impulse signal that has amplitude 
0.5 units and occurs about 6 times during one period of 
dominating vibration of 60 Hz. The resulting signal is shown in 
figure 1.  
 

 
Fig, 1. Original signal with impulses shown separately 
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The impulse signal that we’ve planted in our vibration is shown 
separately. As you can see there is almost no visible indication of 
impulses in the resulting signal. Higher frequency component of 
60 Hz is completely dominant. 
 

 
Fig, 2. Second time derivative a(2) of the original signal 
 
Although the pulses are weak and occur at long intervals, the rate 
of change of their amplitude is quite intense and become 
emphasized upon differentiation of the signal. 
Now when we take the second time derivative of the original 
signal (figure 2) we immediately see how impulses are 
significantly emphasized and the other frequencies are 
diminished. 
 
 
3. CAVITATION DETECTION PROBLEM 
 
In the previous work on cavitation in pumps (Teder, 2003) the 
emphasis was on the detectability of cavitation via the use of 
derivatives and the importance of the chosen frequency range. 
After a meeting with Prof. Lahdelma and analysis of results 
presented in aforementioned paper the decision was made to 
increase the frequency range and to use short-time peak value 
averaging instead of additive averaging. The idea here is to make 
the signal more sensitive to cavitation.  
It was mentioned previously that weaker signals in vibration do 
not contribute much to typical condition monitoring measurement 
parameters. Let us look into that briefly. The most typical 
condition monitoring parameter would be vibration speed in 
mm/s. This is by far most used vibration parameter, because it is 
proportional to vibration energy and typically gives most 
adequate picture about machine condition. The main vibration 
standard is ISO 2372 and it is based on the assumption that 
machine faults are determined through vibration in the frequency 
range of 10-1000 Hz and the machine condition is evaluated by 
the root mean square (rms) of vibration velocity.  
In some cases faults or conditions are difficult or even impossible 
to detect using velocity parameter. One of such conditions is 
cavitation. Cavitation can be characterized as a phenomenon that 
is of intense nature (many impulses occur during a short period of 
time). In such case even the acceleration impulses are often weak, 
but the variation of acceleration is intense and the values of 
derivatives of acceleration are significantly higher compared to 
non-cavitating signal.  
 
 
4. TEST MEASUREMENTS AND ANALYSIS  
 
We will now examine results of a tests conducted on a small 1.1 
kW cold water pump in our laboratory. By variating incoming or 
outgoing water flow we were able to create noticeable cavitation 
effect at speeds beginning around 20 Hz. We verified the 
presence of cavitation with a stethoscope. Without the use of 
stethoscope there was no audible difference in the pump noise. 
The tests were carried out at several different speeds.  
Frequency range for these tests was increased to 5000 Hz 
assuming there might be an increase in amplitudes at higher 

frequencies. Previously used frequency range was up to 2000 Hz 
and comparative test were done using that range. Since vibration 
is a more or less variating process a standard additive averaging 
is typically used when making measurements to achieve more 
adequate results. For cavitation measurements however it might 
be better to use short-time peak value averaging (not more than 5 
averages). This was a suggestion made by Prof. Lahdelma based 
on his experience. The idea here is that cavitation is a process 
where there are strong rapid bursts in short period of time. When 
listening with stethoscope one can hear several pops in short time 
periods.  
Measurements results are shown in tables 1-4 in form of 
comparison between cavitating and non-cavitating signal’s 
overall rms values. For detection of cavitation we used first and 
second derivative of acceleration signal. Acceleration results are 
shown for comparison.  
 
 

Frequency v rms 
(mm/s) 

a rms 
(mm/s2) 

a(1) rms 
(mm/s3) 

a(2) rms 
(mm/s4) 

20 Hz cavitation 0,43 316 2,38E+06 2,30E+10 
20 Hz no cav. 0,33 240 1,84E+06 1,80E+10 

Ratio 1,3 1,3 1,3 1,3 
          
28 Hz cavitation 2,24 1657 1,20E+07 1,00E+11 
28 Hz no cav. 2,12 457 2,30E+06 2,30E+10 

Ratio 1,1 3,6 5,2 4,3 
     
37 Hz cavitation 4,41 2891 1,93E+07 1,80E+11 
37 Hz no cav. 4,48 1386 8,30E+06 7,90E+10 

Ratio 0,98 2,1 2,3 2,3 
     
47 Hz cavitation 2,07 4438 3,65E+07 3,60E+11 
47 Hz no cav. 1,8 735 4,27E+06 4,20E+10 

Ratio 1,2 6,0 8,5 8,6 
 
Table 1. Measurements in frequency domain of 2000 Hz 
 
 

Frequency v rms 
(mm/s) 

a rms 
(mm/s2) 

a(1) rms 
(mm/s3) 

a(2) rms 
(mm/s4) 

20 Hz cavitation 0,61 476 3,97E+06 3,90E+10 
20 Hz no cav. 0,49 328 2,60E+06 2,60E+10 

Ratio 1,2 1,5 1,5 1,5 
          
28 Hz cavitation 2,39 2563 1,92E+07 1,60E+11 
28 Hz no cav. 2,18 554 3,58E+06 3,60E+10 

Ratio 1,1 4,6 5,4 4,4 
     
37 Hz cavitation 4,45 4196 2,95E+07 2,70E+11 
37 Hz no cav. 4,68 1787 1,28E+07 1,20E+11 

Ratio 0,95 2,3 2,3 2,3 
     
47 Hz cavitation 2,45 6666 5,76E+07 5,70E+11 
47 Hz no cav. 1,88 945 6,55E+06 6,50E+10 

Ratio 1,3 7,1 8,8 8,8 
 
Table 2. Measurements in frequency domain of 2000 Hz using 
peak value averaging. 
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Frequency v rms 
(mm/s) 

a rms 
(mm/s2) 

a(1) rms 
(mm/s3) 

a(2) rms 
(mm/s4) 

20 Hz cavitation 0,44 1411 3,39E+07 8,50E+11 
20 Hz no cav. 0,33 377 7,37E+06 1,80E+11 

Ratio 1,3 3,7 4,6 4,7 
          
28 Hz cavitation 2,24 3595 7,86E+07 1,90E+12 
28 Hz no cav. 2,12 607 1,01E+07 2,50E+11 

Ratio 1,1 5,9 7,8 7,6 
      
37 Hz cavitation 4,41 5394 1,13E+08 2,80E+12 
37 Hz no cav. 4,48 1552 1,85E+07 4,20E+11 

Ratio 0,98 3,5 6,1 6,7 
      
47 Hz cavitation 2,11 10089 2,23E+08 5,60E+12 
47 Hz no cav. 1,85 1216 2,46E+07 6,20E+11 

Ratio 1,1 8,3 9,1 9,0 
 
Table 3. Measurements in frequency domain of 5000 Hz 
 
 

Frequency v rms 
(mm/s) 

a rms 
(mm/s2) 

a(1) rms 
(mm/s3) 

a(2) rms 
(mm/s4) 

20 Hz cavitation 0,62 1870 4,48E+07 1,10E+12 
20 Hz no cav. 0,49 470 8,59E+06 2,10E+11 

Ratio 1,3 4,0 5,2 5,2 
          
28 Hz cavitation 2,40 5317 1,15E+08 2,90E+12 
28 Hz no cav. 2,18 749 1,28E+07 3,10E+11 

Ratio 1,1 7,1 9,0 9,4 
     
37 Hz cavitation 4,46 8057 1,70E+08 4,20E+12 
37 Hz no cav. 4,68 2028 2,56E+07 5,60E+11 

Ratio 0,95 4,0 6,6 7,5 
     
47 Hz cavitation 2,52 14734 3,21E+08 8,00E+12 
47 Hz no cav. 1,88 1491 2,95E+07 7,40E+11 

Ratio 1,3 9,9 10,9 10,8 
 
Table 4. Measurements in frequency domain of 5000 Hz using 
peak value averaging. 
 
From the results we immediately see the differences in ratios of 
different signal types. The measurements of vibration velocity do 
not differ much, just as expected.   
In case of acceleration there is some notable difference but as 
experience tells us this ratio is often insufficient, especially at 
lower speeds. Results from this test session are actually 
surprisingly good for acceleration. 
If we now look at a(1) and a(2) signals (first and second derivative 
of acceleration) we see a significant difference between the 
cavitating and non-cavitating signal. Such increase in the overall 
vibration level of a(1) and a(2) signals sends a clear message that 
machine is behaving differently. With higher speeds and stronger 
cavitation, using 5000 Hz frequency domain, the ratio is between 
6-10 which is a very good result. With lower speeds the ratio is 
over 4 which is good enough to get conclusive result.  
As you can see, using higher frequencies also increases 
detectability of cavitation. In previous work we went up to 2000 
Hz. In this new set of tests we used 5000 Hz. The best way to see  

 

 

 
 
Fig. 3. Vibration speed v, acceleration a and first derivative a(1) of 
acceleration of cavitating (gray) and non-cavitating(black) pump. 
 
the difference between signals is to look at fig. 3., the spectrum of 
signal a(1). Frequency spectrum of cavitation signal is in gray and 
non-cavitating signal’s spectrum is in black. The difference is 
quite impressive.   
We also get interesting results comparing standard additive 
averaging with short-time peak value averaging. There’s not 
much difference in frequency domain of 2000 Hz. However in 
5000 Hz measurements we get about 10-20% increase in ratios. 
This is fairly good result but more tests need to be run to 
determine how effective peak value averaging is with different 
measurement setups. 
 
 
5. CONCLUSION  
 
The tests for cavitation detection conducted on a small cold water 
pump using first and second derivative of acceleration have given 
very promising results. We have concluded that good estimation 
of cavitation can be achieved with the first and second derivatives 
a(1) and a(2) of acceleration using commonly available analyzers. 
For better results wider frequency domain can be used including 
higher frequencies plus short-time peak value averaging.  
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