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Abstract: The main point of this work is investigation of free 
oscillations of a noncentroidal body. During oscillation a 
translation process is possible. The translation movement is 
determined by the ratio of the inertia vector against the friction 
force. The results of the investigation are envisaged to be used 
for simplifying the evaluation of certain technological 
equipment with the help of MATLAB Simulink software. The 
energetic method has been used for defining free oscillation 
and translation movement. A body having the shape of a 
circumference was analysed, but any other forms in real 
technological equipment can also exist.  
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1. INTRODUCTION 
 
The motion of a rigid body constrained to rotate about a fixed 
axis which does not pass through its mass centre is called 
noncentroidal rotation and the body itself – noncentroidal. 
A body can roll without or with sliding. It is important to 
formulate the conditions, when sliding starts. When sliding is 
impending, the friction force F reaches its maximum value F = 
mSN, and may be obtained from N, where mS is the coefficient 
of static friction, N – normal reaction. 
When the body rolls and slides at the same time, the relative 
motion exists between the point of the disk, which is in contact 
with the ground, and the ground itself, and the force of friction 
has the magnitude F = mKN, where mK is the coefficient of 
kinetic friction. 
 
2. VECTORS OF NONCENTROIDAL BODY 
 
Investigating motion, when mass centre G does not coincide 
with its geometric centre O, we determine the acceleration of 
mass centre in terms of angular acceleration and the angular 
velocity of the body, i.e. we use the relative acceleration 
formula (Beer&Johnston, 1962): 

 
(1) 

 
where aO – the magnitude of acceleration of the geometric 

centre, 
a(G/O)n, a(G/O)t – the normal and tangential components 
of relative acceleration a(G/O). 

 
In this case (Fig. 1.) the motion of mass centre G and the 
rotation of the body about O are independent. 
From the figure it is seen that, if the initial state (conditions) of 
the body movement corresponds to that in the diagram, the 
influence of the projections of the normal and tangential 
components of relative acceleration does not stimulate sliding – 

the normal reaction is increased, whereas the influence  of aO is 
decreased. 
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Fig. 1. Vectors on noncentriodal body when rolling starts 
 
We shall determine the components of acceleration of mass 
centre G  
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where  R – radii of body, 
OG – distance between centre of rotation and centre 
of mass, 
f – angular displacement. 

If the body has turned in such a way (Fig. 2.), that its mass 
centre is on the left from the support point C, the influence of 
the components of relative acceleration, on the contrary, 
stimulates sliding, the normal reaction is decreased, the 
influence of acceleration aO is increased and, at definite 
numerical values, sliding begins.  

 
Fig. 2. Vectors of noncentroidal body when sliding starts 
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When it is not known whether the body slides or not, it should 
be assumed  that the body rolls without sliding. If inertia vector 
Fin is found smaller than, or equal to, mSN, the assumption is 
proved correct. 

F m a a ain O G O n G O t= − −( sin c( / ) ( / ) os )ϕ ϕ

From Fig. 1 we can write 
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Sliding starts when 

(7) 

 
It allows us to formulate start conditions of sliding in the terms 
of parameters of body and rolling motion 
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It is very important to investigate the possibility of simplifying 
the starting condition of sliding (8). As it was stated above, first 
of all it should be assumed that the disk rolls without sliding. 
The energy method should be applied for finding the equation 
of free rolling oscillations of the body and then analysed, by 
simulating it.  
 
3. EQUATION OF ROLLING OSCILLATIONS 
 
When dissipation of energy in a system is small, the system is 
called conservative. In our conservative system the energy in 
free oscillations is partly kinetic and partly potential. The 
kinetic energy is stored in the mass by virtue of its velocity, 
whereas the potential energy is stored in the form of work done 
against a force field such as gravity. The total energy, however,  
is constant, and the rate of change of the  total energy must 
therefore be zero (Thomson, 1965). 

 
(9) 

 
 

where  T - kinetic energy of the body, 
 U – potential energy of the body. 
 
Furthermore, it is evident that the maximum kinetic energy 
must equal the maximum potential energy. 
In determining the kinetic and potential energies (Fig. 3.), it 
must be taken into account that both translation and rotation 
take place. 

 
 
Fig. 3. Body model for determining energies 
 
The kinetic energy may be written as 
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where  m – mass of the body, 
 IG - moment of inertia about of the mass centre . 

 
The potential energy referred to its position at the lowest point  N m g a aG O t G O n= + −( sin c( / ) ( / ) os )ϕ ϕ  

(11) U mgOG= −( cos1 )ϕ
 

Substituting (10), (11) in equation (9) F Nin s> µ
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During rolling the oscillations of the body energy are dissipated 
in the form of friction or some other form. The actual 

escription of the damping force associated with the dissipation 
of energy is difficult (Routh, 1985). However, ideal damping 
models can be conceived which will often permit a satisfactory 
approximation. Of these the viscous damping force, 
proportional to the first power of the angular velocity, leads to 
the simplest mathematical treatment (Thomson, 1965). 
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Applying viscous damping in (12) it assumes the form of 
homogeneous second-order differential equation 
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where  D – viscous damping coefficient 
 
The equation (13) will be used for analysing the starting 
conditions of sliding of the body by simulating it with Simulink 
software.  
Natural frequency wN of the body 
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4. SIMULATION OF BODY BEHAVIOUR 
 
To find out the influence of the components of relative 
acceleration on the normal reaction N and inertia vector Fin, 
free oscillations of a noncentroidal body are simulated with 
MATLAB Simulink software making use of the equation (13). 
The block diagram of simulation is shown in  Fig. 4. O
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The simulation block diagram envisages an analysis of the 
changes of the normal reaction N during the oscillations of the 
body, as, in compliance with the equation (7), the beginning of 
the sliding movement depends on it.. 
Scope 1 show the time diagrams of angular displacement, 
velocity and acceleration when the body oscillates, and they are 
presented in  Fig. 5. 
Diagram 1 represents the acceleration, diagram 2 – the velocity, 
and diagram 3 – the displacement. 
Scope 2 shows the time diagram of N/m and a(O/G) 
components when the body oscillates, and they are presented in  
Fig. 6. 
As seen from Fig. 6., the normal reaction of a noncentroidal 
body during oscillations has a variable component with a 
double frequency of the body self oscillation (natural) 
frequency wN.  
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The first task, with solving of which the investigation was 
continued, was simplification of the sliding start condition (8). 
It is based on the fact that, by making physical experiments and 
making shots with a digital video camera of the movement of 
noncentroidal bodies, it has been found that during one half-
period of free oscillations of a body there can be only one 
sliding. Thus, the influence of changing of the variable 
component of normal reaction N can be simplified. On the 
other hand, as the values of the friction coefficient is of random 
character which does not allow us to precisely determine the 
beginning and also the end moment of sliding, the complicated 
expression (8) of the beginning of sliding is of no practical 
value. 

 
Fig. 4. Simulation block diagram for analysing free oscillations 
 
Showing graphically and evaluating the relationship and 
influence of the variable components in sliding start conditions, 
it has been found that the sliding start condition can be 
sufficiently precisely determined in a simplified way by 

 
 

(15) 
 

The end of sliding is a controversial issue, however, physical 
experiments allow us to maintain that the following condition 
can be used for approximate evaluation. 
 

 
(16) 

 

 
Fig. 5. Time diagrams of oscillation parameters 

 

Fig. 6. Normal reaction and its component behaviour during 
free oscillations of the body 

Fig. 7. Inertia vector and its component time diagrams during 
the oscillation process (Scope 3 not shown in Fig. 4.) 
 
To show the time of the sliding movement in the oscillation 
parameter time diagram (Fig. 5.), the simulation block diagram 
(Fig. 4.) uses the element Relay, which forms the unity signal 
=1 at its output, if the condition (15) has been fulfilled, but it is 
removed, if the condition (16) has been fulfilled. 
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µ> Thus, in this time diagram there can be analysed both the initial 
and final moment of the sliding movement. 
The sliding movement in the time diagram (Fig. 5.) is shown by 
lines 4. 
The behaviour of a noncentroidal body during its oscillations 
has also other peculiarities which can be considered. Thus, if 
the body is symmetrical, its sliding movement during 
oscillations is of a reciprocating character. However, in 
connection with the energy losses caused by overcoming the 
forces of dry friction, the amplitudes of the speed and 
acceleration in the previous oscillation period are larger than 
the amplitudes of the following period and, with this the 
oscillating body slides in one definite direction which depends 
on the starting conditions. 
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Quite a different scene can be observed if the noncentroidal 
body is asymmetric, i.e. its outer surface is formed by curves 
with different curve radii and the mass of the body is 
concentrated in several points. In this case the sliding 
movement can take place only in one direction, and this fact 
increases the efficiency of the translation of the body. The 
described peculiarities of the movement are shown by lines 4 in 
Fig. 4. 
Another problem to be touched upon is the right to substitute 
the force of dry friction by the force of wet friction (viscous 
resistance, viscous damping). There have been experiments 
(Popov,1987) which confirm the former and determine the 
conditions at which it can be done. 
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In our research coefficient D (13) must be chosen in accordance 
with the results of physical research so that the character of 
movement in the case of dry and viscous friction would be 
identical. 
 
6.  DISPLACEMENT IN SLIDING MOTION 
 
The principle of work and energy offers a tool for express 
evaluation of the displacement of a noncentroidal body in a 
sliding motion, which states that (Sautas-Little & Inman, 1999) 

 
(17) 

 
where   T1,T2 – initial and final values of kinetic energy in 

one cycle of rolling motion of noncentroidal body 
when sliding exists, 

 U1-2 – work of  forces done during the movement. 
If the kinetic energy has changed during the period of the 
movement of a noncentroidal body, it has happened as a result 
of the body  using up energy to overcome dry friction. It will be 
determined by equalling the changes of kinetic energy to the 
work done to overcome the dry friction. 
The kinetic energy in the rolling motion of  body is 

 
(18) 

 
where IG – moment of inertia of the body about the mass 

centre  (Fig. 3.), 
 w – angular velocity of the body. 
Supposing that the only work in the sliding motion is done by 
dry friction, U1-2  can be expressed 

 
 

(19) 
 

 
where  mk – the coefficient of kinetic friction, 
 N = mg – supposing the magnitude of normal 
reaction constant, 
 s – displacement in one cycle of sliding motion. 
 
According to Fig. 5. and expression (17) we can write 

 
 

(20) 
 

where w1, w2 – the values of angular velocity at the start 
and end time moments of sliding motion. 
From equation (20) we get 

 
(21) 

 
 

which allows us to calculate displacement at every cycle of 
sliding motion. 
 
7. CONCLUSIONS 
 
The study of the noncentroidal body behaviour in the period of 
its free oscillations was envisaged with the aim of studying the 
operation efficiency of technological equipment. 
The sliding conditions depend on the interconnection of the 
numerical values of the inertia vector, normal reaction and 
friction coefficient. This fact makes it difficult, even in the case 
of one body, to obtain simple information on the common 
process of the rotation and sliding movement. 
In the result of our research it was found out that adequate 
information on the beginning of sliding can be obtained only by 
studying a rolling motion where the energy losses caused by 

overcoming dry friction are substituted by equal losses of 
viscous friction. 
Displacement values in a sliding movement can be evaluated by 
equalling energy losses of a body during one period of free 
oscillations to the work done by dry friction. 
Experimental research of a noncentroidal body movement 
carried out with the help of a videocamera allows us to 
maintain that considerable displacement of sliding can be 
obtained by using an asymmetric body that is why an equation 
with variable structure should be used in this case. 
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