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Abstract: One of the important parameter of impact process is 
the coefficient of restitution. Practically important task is to 
determine the coefficient of restitution in a contact tasks, when 
is necessary to avoid repeated transient processes during the 
contact. Many researches accept the coefficient of restitution a 
constant (Viba, 1988) (Plavnieks, 1969). Contrary in present 
report this coefficient is obtaining during calculations. Our aim 
is to obtain an effect equal to plastic impact, when not repeated 
impacts will happened in system. Prepared calculations shown 
detailed wave interaction picture in construction. 
Comprehensive parametric analysis was realized. Results of 
elastic and viscoelastic material behaviour were compared. 
Key words: coefficient of restitution, impact, finite differences, 
distributed parameters, boundary conditions. 
 
1. INTRODUCTION 
 
During the impact in complex beam constructions occur both 
longitudinal and transverse waves of deformations. In this 
report only transverse waves of deformation will be considered. 
The beam is the system with distributed parameters, where the 
rigidity and the mass distributed uniformly along the beam. 
(Viba, et al., 2000) The fixed base is absolutely rigid. One of 
the most important tasks is the determination of time of impact, 
moment when the beam rebounds from fixed base. For 
description of beam behaviour during impact are some 
methods. These methods will be observed in this paper. 
 
2. CLASSICAL EQUATION OF STRENGTH OF 

MATERIALS 
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Fig. 1. Model of plane impact of system with distributed 
parameters 
 
2.1. Exact solution (Fourier’s method) 
 
The plane impact of beam in two points is shown in Fig. 1. The 
contact in points A and K continues during the impact. In the 
simplest case the beam behaviour during of impact can be 
described by differential equation (Timoshenko et al., 1985): 
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where: y – vertical displacement of the beam; 
J – moment of inertia of the beam section; 
m – intensity of the beam mass (mass of unit of length). 
In order to solve equation (1) the Fourier’s method was used. 
(Timoshenko et al., 1985) In this case vertical displacement y 
can be rewritten in the form: 
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where: Tn – is fundamental function of time; 
Xn – is fundamental function of displacement; 
n – is number of beam frequency. Due to beam is the system 
with distributed parameters, it has some natural frequencies n. 
Boundary conditions for the beam are given by: vertical 
displacement of beam in contact points A and K is zero 

XTy =  and bending moment in same points is 
zero TXEJM ′′= . So, boundary conditions is 
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where x – is coordinate of beam section at horizontal direction; 
l – is length of beam. 
Fundamental function of displacement is  
 )sin( xkCX nnn =  (4) 
where Cn – is constant depending on scale; 
k is given by 
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where p - is natural frequency of beam 
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The initial conditions for our case are initial displacement and 
initial velocity: 
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So, general solution can be rewritten in the form: 
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For our case constants are equals: 
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General solution is 
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2.2. Method of finite differences 
 
In order to solve the differential equation (1) the method of 
finite differences was used (Krylov et al., 1977). Then the 
differential equation (1) becomes: 
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Boundary and initial conditions are the same as previous case. 
By using the finite differences, boundary conditions can be 
rewritten in the form:  
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By using the finite differences, initial conditions can be 
rewritten in the form:  
  0,0 =xy

 0,0, )(1 vyy xx =−ττ
 (14) 

where , h – integration step in horizontal direction 
(x-direction), , τ - – integration step in t-direction 
(time direction). 

Lx ...0=
Tt ...0=

 
2.3. Comparison of Fourier’s method and method of finite 

differences 
 
Exact solution (Fourier’s method) was realized by using of 
program MathCAD, the method of finite differences by using 
of program MATLAB as it shown in Fig.2. Number of sum for 
exact solution n is equal 5 (See equation 2). 
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Fig. 2. Distribution of vertical displacements of beam points 
during the impact. 

______ - method of finite differences 
_ _ _ _ - Fourier’s method. 
For determination of coefficient of restitution we must know 
the moment of end of impact. At the end of impact the cross 
force in the point of fixed base change the sign and the beam 
rebounds from fixed base. In the Fig.3 is shown the dependence 
of value of cross force on time in the case of exact solution 
(Fourier’s method). You can see that value of cross force in 
fixed base is depending on number of sum. The cross force in 
this case is from equation (10) 
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where N – is number of sum;  
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Fig. 3. The cross force depending on time in case of Fourier’s 
method.  
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 ▬ ▬ ▬ -  number of sum N=4; 
▬▬▬▬ - number of sum N=10; 
────── - number of sum N=20. 
Similar figure will be if we use the classical equation of 
strength of material. In this case the moment of end of impact is 
depending on integration step in horizontal direction (x-
direction). This case is shown in Fig. 4. 
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Fig. 4. The cross force depending on time in case of classical 
equation of strength of material.  
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 ▬ ▬ ▬  – integration step in horizontal direction is h; x 
▬▬▬▬ – integration step in horizontal direction is h/2; 
────── – integration step in horizontal direction is h/4. 
The classical equation of strength of material and Fourier’s 
method not take into consideration inertia of rotation and cross 
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displacement, because in the real impact system cross-sections 
of beam can't realize the high frequencies. 
 
3. CLASSICAL EQUATION OF STRENGTH OF 

MATERIAL WITH VISCOUS DAMPING 
 
For determine the coefficient of restitution of beam during the 
impact we must to use the other differential equation. In the 
case of taking into consideration viscous damping for equation 
(1) normal stress can be rewritten in the form: 

 
dt
dkE εεσ +=  (16) 

where k – is coefficient of viscous damping; 
ε – is the deformation of beam element. 
The deformation of beam element is 
 cy−=ε  (17) 
where c –is coefficient of proportionality. 
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where Θ – is the angle of rotation of cross-section. 
So normal stress can be rewritten in the form: 
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On the other hand bending momentum is 
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where F – is square of beam cross-section; 
J – is momentum of inertia of beam cross-section; 
Sx – is static momentum of beam cross-section  
But for symmetric section Sx=0 and distributed load q is 
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So differential equation (1) can be rewritten in the form: 
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But this model does not solve the problem of determination of 
time of impact, because in this case as a previous cases cross 
force is depending on integration step in horizontal direction. 
 
4. TIMOSHENKO EQUATION 
 
Previous methods of classical equations of strength of materials 
and Fourier’s method can be used in the cases if size of beam 
cross-sections is small in comparison with length of beam. If 
length of beam is in proportion with cross-section we must use 
Timoshenko equation witch take into consideration inertia of 
rotation and cross displacement of sections (Timoshenko et al., 
1985). Total angle of rotation of cross-section is equal: 

 βψθ +==
dx
dy

 (23) 

where ψ – is the angle of rotation of cross-section; 
β – is the angle of cross displacement. 
For this case the bending momentum and cross force are: 
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where G –is cross module; 
Q- is cross force. 
k' - is the coefficient of form of cross-section (for the 
rectangular cross-section k'=5/6). 
Differential equation of equilibrium of momentums for one 
element of beam is: 
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where ρ –is thickness of beam material. 
By using the equations (24) last equation can be rewritten in the 
form:  
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Differential equation of equilibrium of forces for one element 
of beam is: 
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By using the equations (24) last equation can be rewritten in the 
form:  
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For solve of system of equations were used boundary 
conditions (13), initial conditions (14) and equations (26), (28). 
For comparison of precision of all methods was used the real 
material - steel. In Fig. 5 is shown distribution of vertical 
displacements of beam points during the impact (t=25*10-6 s). 
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Fig. 5. Distribution of vertical displacements of beam points 
during the impact (t=25*10-6 s). Material – steel, 
E=2*1011N/m2; G=8*1010 N/m2; ρ=7,8*103 kg/m3; a=2*10-2m; 
b=1*10-2 m (sizes of cross-sections), l=2,5 m (length of beam). 
 ▬ ▬ ▬  – Timoshenko equation (finite differences); 
▬▬▬▬ – classical equations of strength of materials (finite 
differences); 
────── – Fourier’s method. 
The general advantage of Timoshenko equation is what this 
equation gives us the possibility to determine the time of end of 
impact. In the case if we use equations (26) and (28) cross force 
weakly depend on integration step of beam as it shown in Fig. 
6. Dependences of cross forces on time were taken for the same 
material. Boundary conditions (14) take place only during the 
impact. The impact is finished at the moment when the cross 
force changes the sign. In Fig.6 this is the point of intersection 
of curve of cross force and straight line where Q=0. In this case 
exists the difference in point of end of impact by different 
integration steps, but this difference is much smaller then in 
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case of Fourier’s method or of strength of materials method 
(see Fig.3, Fig.4). Synthesis of different methods to let us to 
obtain the dependence of coefficient of restitution on geometry 
of impact system. For determination of time of impact was used 
Timoshenko method, for determination the velocities in this 
moment was used the classical method of strength of materials 
with viscous damping. In order to solve the equation (22), 
boundary conditions (13), initial conditions (14) the method of 
finite differences was used. 
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Fig. 6. The cross force depending on time in case of 
Timoshenko equation. 
 ▬ ▬ ▬  – integration step in horizontal direction is 
h=100mm; 
▬▬▬▬ – integration step in horizontal direction is 
h=150mm; 
────── – integration step in horizontal direction is 
h=200mm. 
In the case of plane impact (Fig.1.) the coefficient of restitution 
is ratio of impulse before and after the impact.  
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where mk – is the mass of one element of beam; 
M- is the mass of beam; 
v0 – is the velocity of beam before impact; 

ky&  - is the velocity of one element of beam. 
The calculations show that with increase of beam length the 
coefficient of restitution is decrease, it shown in Fig.7. 
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Fig. 7. Coefficient of restitution 
 
5. CONCLUTIONS 
 
Timoshenko method to let us to determine time
moment when beam rebounds from fixed
Timoshenko equations and method of finite diffe
obtain only time of impact, but not the value 
Because the value of force in the point of 
depending on step horizontal direction as in s

Apparently this is due to the fact that the fixed base is 
absolutely rigid but the beam is system with distributed 
parameters. 
Approximate calculation on basis of two models: Timoshenko 
method and classical equation of strength of material allow 
concluding what the coefficient of restitution decrease with 
increase of length of beam. 
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