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Abstract: In this paper we consider an application of the 
finite element method in the field of thermomechanics. We 
start with a brief presentation of the continuum mechanics 
balance laws necessary for proper description of material 
behaviour. Constitutive laws of materials in questions are 
described. Due to coupled nature of the considered 
problem we provide a general approach to the coupled 
problems. Decoupling into several smaller problems is 
discussed. We propose a general algorithm based on the 
finite element method capable of dealing with such 
problem. In addition to the presented theory and 
procedures, we also provide verification by means of an 
example. 
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1. INTRODUCTION  
 
In structural design, mechanical behaviour is of prime 
importance.  However, real situations often involve some 
accompanying effects. Among them, various thermal 
effects are most often found. In the most cases, these 
effects are neglected. But, there are some situations where 
thermal behaviour must be accounted for. 
Numerical approach to such problems can be selected 
among several choices. Straightforward choice is surely 
simultaneous solution of thermal and mechanical problem. 
From the numerical point of view, such approach is 
probably the most unwanted. Reasons for this lie in the 
unsymmetrical stiffness matrices and larger system of 
equations in general. In addition, same time scale must be 
used in temporal integration of both mechanical and 
thermal effects. Nevertheless, this procedure cannot be 
avoided in the case of bifurcation analysis. An alternative 
to this approach is decoupling the problem into several 
phases, in this case into mechanical and thermal phase. 
Advantages of this decoupling are smaller subproblems that 
are usually symmetrical. 
The most often thermal effect is temperature dilatation, i.e. 
object change dimensions when it is subjected to 
temperature variations. If these dilatations are constrained, 
stresses arise proportionally to the constrained dilatations. 
This situation, in which strains vary linearly with 
temperature variation is known as linear thermoelasticity. 
Although a rather simple class of coupled problem, 
nevertheless it can be classified as coupled problem. These 
coupling effects take place through influence of thermal 
field on mechanical field. In linear thermoelasticity it is 
assumed that mechanical effects do not influence thermal 
field. Therefore thermal phase can be calculated 
independently of mechanical one. 

2. CONTINUUM MECHANICS FUNDAMENTALS 
 
2.1 Kinematics 
 
We will employ two configurations in order to define various 
mechanical and thermal fields. In particular, we use referent 
(initial) configuration that is defined with the initial position 
of the body in question and current configuration that is 
defined with the last – current position of the body. In the 
following text we will denote quantities defined in referent 
configuration with the upper case symbols, while the 
quantities in current configuration will be denoted with the 
lower case symbols (Truesdell & Noll, 1965). 
As a fundamental measure of deformation we use a 
deformation gradient F. It is defined as follows: 
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In above equation xi and Xi denote positions of a point in the 
current and initial configuration, respectively. Of a particular 
interest is also a determinant of deformation gradient: 

0det ≠= FJ .                                     (3) 
This determinant is a measure of volume change. In the 
isochoric case, i.e. when no volume change take place, it must 
be: 

1=J .                                           (4) 
In the continuum mechanics it is customary to employ various 
strain tensors. In the current work we use the following strain 
tensors: 

FFC t= ,                                       (5) 
which is known as Green or right Cauchy – Green strain 
tensor and 

tFFb =                                         (6) 
which is known as Finger or left Cauchy – Green strain 
tensor. These tensors, eq. (5) and eq. (6) are equal to the unit 
tensor in the case of unloaded body. 
 
2.2 Balance laws 
 
Balance laws of the continuum mechanics will be employed 
as a basis for the finite element discretization. Therefore, we 
will provide a brief description of the basic equations in the 
text that follows. 
When the case of thermoplasticity is considered, we must bear 
in mind that metals subjected to the plastic deformation does 
not change volume. Consequently, the balance of the mass 
law must be employed at the some point in the model to 
enforce condition defined with the eq. (4). This balance law 
can be written: 
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where ( )tx,ρ  is known as density function while the 

integral  is known as the mass of the body. An  

equivalent relationship that is also often used is: 
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Momentum balance defined in current configuration can be 
stated as follows (Marsden & Hughes, 1994): 
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In the above equation b(x,t) is defined as body forces and 
t(x,t,n) is Cauchy stress vector. If the Cauchy stress vector 
is defined as a force over the surface with the normal n, 
then it is: 

( ) ( ) nnt ⋅= txtx ,,, σ ,                         (10) 
where ( )tx,σ  is the Cauchy stress tensor. Of further 
interest is the momentum balance equation written in local 
form: 

σdiv+= bρρv& .                          (11) 
The right side of equation  

v&ρ                                        (12) 
represent inertial forces that are often left out in the static 
analysis. 
The balance of the moment of the momentum leads toward 
the well-known symmetry property of the Cauchy stress 
tensor: 
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what yields: 
jiij σσ = .                                  (14) 

The basis for the thermal part of the model is the balance of 
energy law: 
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where r(x,t) represent heat input per unit mass, e(x,t) 
internal energy per unit mass, ( )n,, txh  heat flux on surface 
with normal n.  Heat flux vector is defined as: 

( ) ( ) nqn ⋅−= x,ttx ,,h ,                        (16) 
where  

θ∇−= kq                                    (17) 
is the Kirchhoff heat conduction law.  
Balance of energy law can be also written using current 
configuration: 

re ρρ +⋅=+ dq σdiv& .                      (18) 
Some restrictions are enforced by the second law of the 
thermodynamics or Clausius – Duhem inequality written in 
initial configuration: 
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is specific entropy.  

If internal entropy production per unit mass γ is introduced, 
following form of the inequality is obtained: 
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what can be further transformed to: 
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where locγ  is local entropy production and conγ  is entropy 
production due to heat conduction. First inequality 
corresponds to the fact that body with homogeneous 
temperature field without heat sources can absorb mechanical 
energy but cannot return it. Second inequality constrains heat 
flow from the warmer to colder bodies and does not allow 
opposite processes (Simo & Miehe, 1992). 
Presented balance laws as well as basic kinematics should be 
augmented with constitutive laws in order to complete the 
proposed thermomechanical model. 
 
2.3 Constitutive laws 
 
Stresses are calculated from free energy function: 

C
S
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This means that the structure of the free energy function is 
determined by the material behaviour. Several choices are 
available at this point. 
In the case of linear, uncoupled thermoelasticity free energy is 
given by (Boley & Wiener, 1967):  

( ) ( ) ( ) ( )θθθθψ ,,, eWJUJMT b+++= ,             (24) 
where are: 

• ( )θT - thermal potential, 
• ( )θ,JM  - thermoelastic coupling, 
•  ( )JU  - volumetric potential, 
• ( )CW  - deviatoric potential. 

The specific form for above potentials can take different 
forms depending on the material. For the specific case of the 
most metals, they are usually taken to be: 
thermal potential: 
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thermoelastic coupling potential: 
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volumetric potential: 
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and deviatoric potential: 
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Above we do not consider change of material parameters with 
temperature. 
In the case of coupled thermoplasticity constitutive law must 
account for hardening. Hardening can be of isotropic and 
kinematic type, or a combination of these two. Several 
possible choices for these hardening models have been 
proposed.  
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In addition to finite strain modeling in the case of 
thermoplasticity, a general model should consider a 
temperature dependency of all material parameters. In this 
case we propose the following form for the free energy 
function: 

( ) ( ) ( ) ( ) ( )θξθθθθψ ,,,,, zb KWJUJMT e ++++= . 
 (29) 

In the above equations it is: 
thermal potential: 
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what means that specific heat capacity should be defined 
as: 
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thermoelastic coupling potential: 
( ) ( ) ( ) ( )[ ]θθαθθθ ,3, 0 JUJM J∂−−= ,        (32) 

volumetric potential: 
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deviatoric potential: 
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and hardening potential: 
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We also use von Mises yield criterion of the following 
form: 

( ) ( )[ ] 0
3
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This criterion defines elastic domain as the interior of this 
surface and boundary as plastic domain. 
In addition to this constitutive model in the 
thermoplasticity we also employ multiplicative 
decomposition of the deformation gradient into the elastic 
and plastic part (Simo & Hughes, 1998): 

peFFF = .                                (37) 
Elastic part of deformation gradient represents deformation 
from the stress-free intermediate configuration to the 
current configuration, Fig. 1. 
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Fig. 1. Multiplicative decomposition of the deformation 
gradient 

3.  SOME ASPECTS OF THE NUMERICAL 
PROCEDURE 
 
As already stated in the introduction, thermomechanical 
problems are coupled. In this work we will choose to 
decouple the problem into two steps: mechanical and thermal 
step. As a consequence, stiffness matrix is no longer 
unsymmetrical and with lower rank. Therefore, we can use 
more efficient numerical procedures. However, the resulting 
scheme is no longer unconditionally stable. Luckily, this is 
not of importance for the thermoplasticity of metals. 
Unconditional stability can be achieved by the application of 
the so-called isentropic split. The basic property of such 
approach is separation in two phases: one with constant 
entropy and one where entropy is allowed to change. 
Mechanical and thermal step are linearized in order to obtain 
algorithmically consistent tangent stiffness matrices. Since we 
use Newton-Raphson scheme to deal with nonlinearities, such 
linearization is essential condition to obtain quadratic 
convergence typically associated with this scheme. Obtained 
stiffness matrix for the mechanical phase consists of the 
following parts: 

MLMmatMgeoM KKKK ++= ,                (38) 
where parts are geometrical stiffness, material stiffness and 
follower forces part, respectively. Geometrical stiffness 
accounts for large displacement effects, material stiffness 
nonlinearities due to nonlinear material behaviour and the 
follower forces part considers variations in load due to 
geometry change. 
As a numerical tool, we employ the finite element method 
(Zeinkiewicz & Taylor, 2000; Hughes, 2000). Primary fields 
to solve are taken as usual: displacement and temperature. 
However, as it is well known, plasticity of metals exhibit 
volume constancy. This leads toward problems in the 
numerical procedure – to the so-called locking behaviour 
which is characterized by the inability to properly model 
pressure part of the stress tensor. In order to circumvent such 
problems, we introduce an additional pressure field. 
For the numerical modeling of plasticity we used radial return 
method. Stresses are predicted as elastic and then if obtained 
state lies outside the yield surface is projected – corrected to 
lie on the yield surface. 
 
4. EXAMPLE  
 
In this example we consider behaviour of cylindrical 
specimen under axial load. This is the well-known uniaxial 
test. Specimen is 53.334 mm long and radius is 6.413 mm. 
Due to the axial symmetry of the specimen, only one quarter 
of the longitudinal section of the specimen is actually 
discretized by the 200 isoparametric finite elements.  
Calculation has been carried out with 200 equal time steps.  
Thermal boundary conditions allowed heat convection into 
the environment. Convection heat coefficient was 

. Environment temperature was 
constant and equal to 

N/mmsK 105,17 3−⋅=h
K 2930 =θ .  

Experimentally noticed behaviour is characterized by the 
occurrence of the so-called neck at the position of the 
eventual breaking of the test specimen. If this process is 
modeled as isothermal, then one needs to introduce an 
imperfection to initiate necking. However, it is to be 
emphasized that with presented thermoplastic model 
imperfection is no longer needed. Nonhomogenities that arise 
in the temperature field are trigger for the necking behaviour. 
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We consider the following material properties for the 
specimen: 
 
 Quantity Symbol  Value 

 Shear modulus µ  164206 MPa 

 Bulk modulus κ  80193.8 MPa 

 Initial yield stress y0 450 MPa 

 Isotropic hardening 
modulus 

h 129.24 MPa 

 Saturation hardening 
modulus 

∞,0y  715 MPa 

 Hardening exponent δ 16.93 

 Density 
ρ 9108,7 −⋅  

Ns2/mm4

 Thermal expansion coef. α 5100,1 −⋅  K-1

Thermal conduction k 45 N/sK 
Heat capacity c0 3.588 N/mm2K 

Dissipation factor χ 0.9 

 Yield stress softening ω0 0,002 K-1

Hardening modulus 
softening 

ωh 0,002 K-1

 
Table 1. Thermoplastic material properties of the uniaxial 
test specimen 
 

 
Fig. 2. Temperature increase at the end of the stretching 
process 

 
Fig. 3. Equivalent plastic strain at the end of the process 
 
5. CONCLUSION 
 
In the engineering design thermomechanical problems are 
frequent. We presented fundamentals of these problems. 
Although several different aspects of the thermomechanical 
problems are addressed, an emphasis on finite strain 
thermoplasticity is given. An example that is computationally 
intensive has been presented. However, a lot of other possible 
modifications to the presented procedure can be introduced. 
For example, strain rate dependency can be added to model 
thermoviscoplastic behaviour. In addition, damage models, 
micro – macro coupling and other effects can be introduced. 
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