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   Abstract: Forced and parametric lateral oscillations of 
flexible elements (belts, cables, guy rapes, filaments, etc.) 
in machines and devices are studied. Mathematically the 
problem is presented as a partial differential equation 
describing interaction of parametric and forced vibrations 
of flexible element with due account of its geometrical and 
static non-linearities. By the mathematical simulation it is 
shown, that additional vibration loading of parametrically 
excited system can result in breakdown of parametric 
oscillations. On the base of this effect new approach to the 
suppression of unfavourable parametric vibrations of 
flexible elements is proposed. 
Key words: parametric oscillations, additional excitation, 
flexible element, suppression. 
 
1. INTRODUCTION 
 
Flexible elements (belts, cables, guy ropes, filaments, 
strings, etc.) are widely used in machines and devices for 
various practical purposes (belt and chain transmissions, 
vibrating belts of vibromixers, etc). Lateral vibrations of 
flexible elements, which can occur during the operation of 
machine, are extremely detrimental (Armada et al., 2003). 
They give rise to additional dynamic loading, which 
encourages wearing and failure of flexible elements. 
Spectrum of resonance lateral oscillations of flexible 
elements may be sufficiently dense (resonances of forced 
vibrations, simple parametric resonances, combination 
resonances). Besides, geometrical and physical non-
linearity of flexible element can result in pulling of 
resonant oscillations and further widening of dangerous 
frequency ranges. In such conditions system’s tuning away 
from resonance frequencies remains problematic. 
This paper proposes new approach to the suppression of 
non-linear parametric vibrations based on application to the 
system of additional kinematical vibration excitation. 
Effect of vibration stabilization is known in mechanics 
(Landa, 1996; Oks et al., 1993; Strizhak, 1984). Typical 
example is the stability of overturn pendulum in the case of 
vibration action on hanging point (Chelomej, 1956). The 
present research is devoted to studying of vibration 
stabilization phenomena in application to a parametrically 
excited flexible element (thread). 
  
2. DYNAMIC MODEL  
 
Transverse oscillations of taut flexible element (thread) 
under parametric and kinematical excitations are 
considered (Fig. 1). Parametric excitation is caused by 
periodic variation in time of axial tension force, but 
kinematical excitation is due to forced transverse 
displacement of one end of the flexible element. 

 
Fig. 1. Model considered in dynamic analysis 

 
In forming of differential equation of oscillations some 
assumptions are made. It is supposed, that stiffness in bending 
of flexible element is negligible in comparison with its 
stiffness in tension, but weight of flexible element is ignorable 
in comparison with axial prestressing force T0 . Besides, it is 
considered that oscillations are performed in one plane, which 
runs along the centre line of a non-deformed flexible element. 
Taking the direction of the co-ordinate axis z along this centre 
line, the differential equation for transverse vibrations of 
flexible element can be stated as follows (Bondar, 1971; 
Tsyfansky et al., 1991): 
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where T0 is the prestressing force of flexible element; µ and Ω 
are the non-dimensional amplitude and the frequency of 
parametric excitation; b1 and b2 are the coefficients of internal 
and external friction; y is the lateral displacement of the 
flexible element’s cross-section with the co-ordinate z. 
The functional f(ε) in equation (1) takes into account 
additional tension caused by elastic deformation of flexible 
element during its oscillations (physical non-linearity). The 
elongation ε of flexible element can be determined by formula 
(Bondar, 1971): 
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where l is the length of flexible element. 
The relationship between axial stress σ in flexible element 
and its elongation ε can be approximately described by the 
expression 
                                                                  (3) , 3βε−ε=σ E

where E is the elasticity modulus of material; β is the 
coefficient of non-linearity. In this case the functional f(ε) can 
be expressed in the following form 
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where A is the cross-section area of flexible element. 
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Therefore an increment in tension is caused by integral 
elongation of flexible element and is independent of co-

ordinate z. Non-linear term ])(
2
11[ 2
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+  of equation (3) 

takes into account geometrical non-linearity of flexible 
element (Bondar, 1971). 
In the case studied here the end boundary conditions are as 
follows: 
                  (5) , sin),(       ; 0),0( thtlzytzy ω====
where h and ω are the amplitude and frequency of external 
kinematical excitation. 
Equation (1), subject to the expressions (4) – (7), was 
solved on an analogue-digital computer system 
predominantly set up for the solution of complex non-linear 
dynamics problems (Tsyfansky et al., 1991). The 
integration of non-linear differential equations is carried 
out on the high-speed analogue part of the computer 
system, but control over the programming of the analogue 
part and data processing is executed by the digital part. The 
methods of mathematical simulation and the operational 
principle of the computer system are described in more 
detail in references (Tsyfansky, 1979; Tsyfansky et al., 
1991). The quantitative estimation of accuracy in analogue-
digital simulation was carried out by the solution of test 
examples and particular engineering problems (Belovodsky 
et al., 2002; Tsyfansky et al., 1991; Tsyfansky & 
Beresnevich, 2000). 
 
3. PARAMETRIC VIBRATIONS OF FLEXIBLE 
ELEMENT 
 
First the case of parametric excitation only (h = 0) is 
considered. Fig. 2 shows the region of main parametric 
resonance (Ω = 2ω1, where ω1 is the first natural frequency 
of lateral oscillations of flexible element) in the plane of 
parameters µ and η = Ω/ω1. Above a typical amplitude-
frequency characteristic (AFC) corresponding to the first 
mode of transverse oscillations of flexible element is 
presented (resonance curve abc). This graph is constructed 
assuming the parameters of the equations (1) – (5) to be 
according to the following conditions: ρlg/EA = 6⋅10-6;  
b1ω1 = 0.003; T0/EA = 2⋅10-4; µ = 0.15. Dimensionless 
displacements u0/l are projected as amplitudes on this AFC. 
Part ab of the resonant curve corresponds to the parametric 
regimes realized with the system tuning on the main region 
of parametric instability. The domains of attraction for this 
case (η = 2) are shown in Fig. 3. The origin of co-ordinates 
(y(z=l/2, 0) = 0, ) is a saddle point (trivial 
solution, corresponding to the unstable rest state of the 
system). Two stable focal points  and  
correspond to two stable parametric regimes, which are in 
antiphase and equal in amplitudes. Either parametric 
regime has its own domain of attraction. 
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Part bc of the AFC corresponds to the zone of non-linear 
pulling of vibrations. In this case amplitudes of oscillations 
are sufficiently increased. Fig. 4 shows the domains of 
attraction of parametric regimes for the case η = 2.7 and    z 
= l/2. There are two domains of initial conditions, which 
lead the system to stable parametric regimes (stable focal 
points  and . All other initial conditions drive the 
system to the stable trivial solution y(z, t) = 0 and 

 (stable focal point S
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Fig. 2. Region of main parametric resonance and typical 

amplitude-frequency characteristics 
 

 
Fig. 3. Domains of attraction for the regimes realized inside 

the main region of parametric instability (η = 2) 
 
As follows from the analysis of the domains of attractions 
presented, parametric oscillations of flexible element have a 
limited reserve of stability. For example, the loss of stability 
is possible under some perturbation of phase co-ordinates y, 

 of parametric regime. If one of two regimes (e.g., regime 

) loses stability inside region of parametric resonance 

(part ab of the AFC), then instead of regime  other 

regime  is excited (see Fig. 3). Amplitude and frequency 
of parametric oscillations in this case are unchanged. 
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Fig. 4. Domains of attraction for the regimes realized 

outside the main region of parametric instability (η = 2.7) 
 

Disturbance of phase co-ordinates y(z, t) and , if it 
takes place inside the pulling zone bc, can result in 
breaking down the steady state parametric oscillations. In 
this case system reaches the quiescent state (stable focal 
point S
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0) instead of oscillatory regimes  and   
with finite amplitude (see Fig. 4). 
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4. INTERACTION OF PARAMETRIC AND 
FORCED VIBRATIONS OF FLEXIBLE 
ELEMENT 
 
As it follows from the analysis of solutions of the set of 
equations (1) – (5), the disturbance of phase co-ordinates 
y(z, t) and , which drives the system to the breaking 
down of non-linear parametric oscillations within 
frequency range bc (Fig. 2), can be realized by the proper 
choice of parameters ω and h of the external kinematical 
excitation. What is more, under certain values of 
parameters ω and h it is possible to suppress completely the 
parametric oscillations in the pulling zone bc. 

),( tzy&

Values of ω and h, which favour such suppression, have 
been determined by the mathematical simulation of the 
problem stated on the base of factorial experiment design. 
During this simulation main dimensionless parameters of 
the system have been varied within the limits: T/EA =   
= (0.5 ÷ 5)⋅10-4; b1ω1 = 0.002 ÷ 0.018; η = Ω/ω1 = 2 ÷ 3;   
µ = 0 ÷ 0.5. Experimental points have been located within 
this space of parameters in accordance with the uniform 
distribution design (Audze & Eglais, 1977). 
It is shown by the mathematical simulation, that application 
to flexible element of external kinematical excitation 
hsinωt is effective in the low frequency range   (ν = ω/ω1 = 
0.2 ÷ 0.8). In this case suppression of non-linear parametric 
oscillations is achieved under the least possible amplitude h 
= (0.25 ÷ 0.33)u0 of kinematical excitation. The non-linear 
effect revealed is used for the development of new method 
for the suppression of parametric oscillations of flexible 
element. 
Fig. 2 shows a resonance curve de, which corresponds to 
the resulting oscillations of flexible element after 
application to it of kinematical excitation hsinωt with 
parameters h = 0.25u0; u0 = 0.05l and ν = 0.5. 

It follows from the comparison of curves de and abc that due 
to application to the system of additional kinematical 
excitation the non-linear pulling of parametric oscillations is 
completely avoided. And simultaneously some amplification 
of the resulting oscillations in region ab (approximately on 
25%) is observed. Besides, outside the frequency range ab 
usual forced oscillations with frequency ω are excited (parts 
kd and mn of the AFC). But on the whole, the intensity of 
transverse vibrations of flexible element after application of 
additional kinematical excitation is sufficiently decreased. 
 
5. CONCLUSION 
 
New approach to the suppression of unfavourable non-linear 
parametric oscillations of flexible elements (belts, cables, guy 
ropes, etc.) based on application to the system of additional 
vibration excitation is proposed. This method makes it 
possible to prevent non-linear pulling of resonant oscillations 
and thanks to this extends the allowable operating frequency 
range of machine. This is especially important in cases, when 
tuning away from hazard resonant frequencies is hindered or 
impossible at all. Structural realization of the method 
proposed in many cases is simplified, because vibration of 
machine itself can be used as external kinematical excitation. 
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