
11th International DAAAM Baltic Conference 
INDUSTRIAL ENGINEERING 
20-22 April 2016, Tallinn, Estonia 
 

NUMERICAL SOLUTION OF A CLASS OF FRACTIONAL 
DELAY DIFFERENTIAL EQUATIONS VIA HAAR WAVELET 

 
Aziz, I; Amin, R & Majak, J. 

 

Abstract: In this paper, Haar wavelet 
collocation method is applied for the 
numerical solution of fractional delay 
differential equations. The method is 
applied to linear and nonlinear fractional 
delay differential equations. The numerical 
results are compared with the exact 
solutions and the performance of the 
method is demonstrated by calculating 
the maximum absolute errors and mean 
square roots errors for different number 
of collocation points.  The numerical 
results show that the method is simply 
applicable, accurate, efficient and robust. 
Keywords: Fractional calculus, Caputo 
derivative, Haar wavelet, fractional 
delay differential equations. 
 
1. INTRODUCTION 
 
The subject of fractional calculus deals 
with generalizations of differentiation 
and  integration of arbitrary orders and 
dates back to  correspondence between 
L’ Hospital and  Leibniz towards the end 
of 17th century. This was followed by 
the contributions from Euler and 
Lagrange in 18th century. Abel solved 
the integral equations encountered in the 
tautochrone problems using fractional 
derivatives, a notion not so well 
formulated then. The work of Abel gave 
further stimulus to the development of 
the subject. The pioneering works of 
Liouville, Riemann, Grunwald and 

Letnikov in the middle of 19th century 
finally led to formulation of fractional 
integrals and derivatives with subsequent 
development of fractional calculus [1]. 
The fractional derivatives have less 
properties than the corresponding 
classical ones. As a result, it makes these 
derivatives very useful in describing 
anomalous phenomena [2].   Recently, an 
important attempt to give a physical 
meaning to the initial conditions for 
fractional differential equations with 
Riemann-Liouville fractional derivatives 
was suggested in [3]. 
Fractional calculus has been used to 
model physical and engineering 
processes that are found to be the best 
described by fractional differential 
equations. For that reason we need a 
reliable and efficient technique for the 
solution of fractional differential 
equations. Fractional delay differential 
equations have recently been applied in 
various areas of engineering, science, 
finance, applied mathematics, 
bioengineering and others [4]. 
The use of wavelets has come to 
prominence during the last two decades. 
They have wide- ranging applications in 
scientific computing, and it is no surprise 
that they have been extensively used in 
numerical approximation in the recent 
relevant literature. Some of the recent 



work using wavelets can be found in the 
references [5–7, 12-14]. 
In the present work, we will consider 
fractional delay differential equations 
with time-delay τ in the state of the 
following form [8]: 
 
𝐷𝛼𝑢(𝑡) = 𝑎 𝑢(𝑡 − 𝜏) + 𝑏 𝑢(𝑡) + 𝑓(𝑡), 𝑡 > 0, 
𝑢(𝑡) = 𝜑(𝑡), 𝑡 ∈ [−𝜏, 0],   
𝑢(0) = 𝑢0,        (1) 
 
where 𝑢(𝑡)  is the state function, 𝑢(0)  is 
the initial condition, a and b are 
constants, f is a continuous function on 
[0,𝑇],𝑇 > 0,𝜑(𝑡) is the  delay condition 
continuous on [−𝜏, 0] , and 𝐷𝛼  is the 
fractional derivative of order α which 
will be considered in the Caputo sense in 
this paper. 
The Caputo fractional derivative operator 
Dα  of order α was introduced by M. 
Caputo in 1967 and is defined as [9]: 
 

𝐷𝛼𝑓(𝑥) =
1

Γ(𝑛 − 𝛼)�
𝑓(𝑛)(𝑡)𝑑𝑑

(𝑥 − 𝑡)1+𝛼−𝑛
,𝛼 > 0,

𝑥

0
 

        (2) 
where 𝑛 − 1 < 𝛼 < 𝑛,𝑛 ∈ ℕ, 𝑥 > 0. 
The paper is organized in the following 
structure. In Section 2, Haar wavelet is 
introduced. The numerical method for 
the solution of fractional delay 
differential equations based on the Haar 
wavelet is developed in Section 3. In 
Section 4, numerical experiments are 
performed. Finally, some conclusions are 
drawn in Section 5. 
 
2. HAAR WAVELET 
 
The Haar wavelet family for 𝑥 ∈ [0,1)is 
defined as [5]: 

           ℎ𝑖(𝑡) = �
1 𝑡 ∈ [𝜉1, 𝜉2),
−1 𝑡 ∈ [𝜉2, 𝜉3),
0 elsewhere,

            (3) 

where 

𝜉1 =
𝑘
𝑚

, 𝜉1 =
𝑘 + 0.5
𝑚

, 𝜉3 =
𝑘 + 1
𝑚

. 

In the above definition integer 𝑚 = 2𝑗 , 
𝑗 = 0,1, … , 𝐽 , indicates the level of the 
wavelet and integer 𝑘 = 0,1, … ,𝑚 − 1  is 
the translation parameter. Maximum 
level of resolution is 𝐽. The index i in Eq. 
(3) is calculated using the formula 
𝑖 = 𝑚 + 𝑘 + 1. In case of minimal values 
𝑚 = 1,𝑘 = 0, we have 𝑖 = 2.The maximal 
value of i is 𝑖 = 2𝑀 = 2𝐽+1. 
Any square integrable function 𝑢(𝑡) 
defined on [0,1)  can be approximated 
using Haar wavelet series as 
 
                 𝑢(𝑡) ≃ ∑ 𝜆𝑖ℎ𝑖(𝑡)𝑁

𝑖=1 .                 (4) 
 
Let 𝑝𝑖,1(𝑥)  denotes the integral of Haar 
function as defined below. 
 

𝑝𝑖,1(𝑡) = � ℎ𝑖(𝑧)𝑑𝑑
𝑡

0
= �

𝑡 − 𝛼 𝑡 ∈ [𝜉1, 𝜉2),
𝛾 − 𝑡 𝑡 ∈ [𝜉2, 𝜉3),

0 otherwise.
 

         (5) 
 
3. NUMERICAL PROCEDURE 
 
In this section, proposed numerical 
method will be developed to find 
numerical solution of linear as well as 
nonlinear fractional delay differential 
equations using Haar wavelet collocation 
method. For Haar wavelet collocation 
method the highest derivative involved is 
approximated using Haar wavelet in the 
following way 
 
              𝑢̇(𝑡) = ∑ 𝜆𝑖ℎ𝑖(𝑡)𝑁

𝑖=1 .                    (6) 
 
The approximate expression for the 
solution 𝑢(𝑡)  is obtained by integrating 
the above equation and thus we have 
          𝑢(𝑡) = 𝑢0 + ∑ 𝜆𝑖𝑝𝑖,1(𝑡),𝑁

𝑖=1              (7) 



where 𝑢0 = 𝑢(0). 
 
Linear Case 
 
Consider the initial value problem for a 
linear fractional delay differential 
equation with finite delay 𝜏 > 0, given in 
Eq. (1). Applying the Caputo derivative, 
we obtain 

1
Γ(𝑛 − 𝛼)� 𝑢(𝑛)(𝜏)(𝑡 − 𝜏)𝑛−𝛼−1𝑑𝑑

𝑡

0
 

                  = 𝑎 𝑢(𝑡 − 𝜏) + 𝑏 𝑢(𝑡) + 𝑓(𝑡)   (8) 
 
We will describe the method for 𝑛 = 1 
only. For other values of n, a similar 
procedure can be adopted. For 𝑛 = 1, the 
above equation becomes 
 

1
Γ(𝑛 − 𝛼)� 𝑢̇(𝜏)(𝑡 − 𝜏)−𝛼𝑑𝑑

𝑡

0
 

                  = 𝑎 𝑢(𝑡 − 𝜏) + 𝑏 𝑢(𝑡) + 𝑓(𝑡).  (9) 
 
Next applying the Haar wavelet 
approximations we obtain 
 

��
1

Γ(𝑛 − 𝛼)� ℎ𝑖(𝜏)(𝑡 − 𝜏)−𝛼𝑑𝑑
𝑡

0

𝑁

𝑖=1

− 𝑏 𝑝𝑖,1(𝑡)� 𝜆𝑖

= 𝑎 𝑢(𝑡 − 𝜏) + 𝑏 𝑢0 + 𝑓(𝑡). 
      (10) 
Discretizing the above equation, we 
obtain 

��
1

Γ(𝑛 − 𝛼)� ℎ𝑖(𝜏)�𝑡𝑗 − 𝜏�
−𝛼
𝑑𝑑

𝑡𝑗

0

𝑁

𝑖=1

− 𝑏 𝑝𝑖,1�𝑡𝑗�� 𝜆𝑖

= 𝑎 𝑢�𝑡𝑗 − 𝜏� + 𝑏 𝑢0

+ 𝑓�𝑡𝑗�, 
𝑗 = 1,2, … ,𝑁,     (11) 
where 𝑡𝑗 , 𝑗 = 1,2,⋯ ,𝑁  are the 
collocation points defined as: 

𝑡𝑗 = 𝑗−0.5
𝑁

, 𝑗 = 1,2,⋯ ,𝑁.                     (12) 
 
The following notation is introduced: 
 

𝐺𝑗𝑗 =
1

Γ(𝑛 − 𝛼)� ℎ𝑖(𝜏)�𝑡𝑗 − 𝜏�
−𝛼
𝑑𝑑

𝑡𝑗

0

− 𝑏 𝑝𝑖,1�𝑡𝑗�, 𝑖, 𝑗 = 1,2,⋯𝑁. 

                                                            (13) 
With this notation Eq. (11) can be written 
in matrix form as: 

𝑮𝑮 = 𝑩, 
where 
𝑮 = [𝐺𝑗𝑗]𝑁×𝑁 ,𝝀 = [𝜆𝑖]𝑁×1,𝑩 = [𝐵𝑖]𝑁×1. 
The entries in the matrix G are calculated 
as [10]: 

𝐺𝑗𝑗 = 0, 0 ≤ 𝑡𝑗 < 𝜉1, 

𝐺𝑗𝑗 = (𝑡𝑗−𝜉1)1−𝛼

Γ(1−𝛼)(1−𝛼) − 𝑏 𝑝𝑖,1�𝑡𝑗�, 

𝜉1 ≤ 𝑡𝑗 < 𝜉2, 

𝐺𝑗𝑗 =
�(𝑡𝑗 − 𝜉1)1−𝛼 − 2(𝑡𝑗 − 𝜉2)1−𝛼�

Γ(1 − 𝛼)(1 − 𝛼)
− 𝑏 𝑝𝑖,1�𝑡𝑗�, 𝜉2 ≤ 𝑡𝑗 < 𝜉3, 

and 
𝐺𝑗𝑗

=
�(𝑡𝑗 − 𝜉1)1−𝛼 − 2(𝑡𝑗 − 𝜉2)1−𝛼 − (𝑡𝑗 − 𝜉3)1−𝛼�

Γ(1 − 𝛼)(1 − 𝛼)
− 𝑏 𝑝𝑖,1�𝑡𝑗�, 𝜉3 ≤ 𝑡𝑗 < 1, 
whereas the entries in the matrix B are 
given below: 

𝐵𝑗 = �
𝑎 𝜑�𝑡𝑗 − 𝜏� + 𝑏 𝑢(𝑡𝑗) + 𝑓�𝑡𝑗� 𝑡𝑗 < 0
 𝑎 𝑢�𝑡𝑗 − 𝜏� + 𝑏 𝑢(𝑡𝑗) + 𝑓�𝑡𝑗� 𝑡𝑗 > 0

 

Hence the unknowns 𝜆𝑖, 𝑖 = 1,2,⋯ ,𝑁  are 
calculated as 

𝝀 = 𝑮−1𝑩 
The approximate solution at the 
collocation points is finally calculated by 
substituting 𝜆𝑖, 𝑖 = 1,2,⋯ ,𝑁 in Eq. (7). 
 
Nonlinear Case 
 
We consider the nonlinear fractional 
delay differential equation in the 



following form: 
𝐷𝛼𝑢(𝑡) = 𝑓�𝑡,𝑢(𝑡),𝑢(𝑡 − 𝜏)�. 

By applying a similar procedure 
discussed for the linear case we obtain 

1
Γ(1 − 𝛼)� �𝑡𝑗 − 𝜏�−𝛼�𝜆𝑖ℎ𝑖(𝜏)

𝑁

𝑖=1

𝑑𝑑
𝑡

0
 

= 𝑓 �𝑡,𝑢0 + �𝜆𝑖𝑝𝑖,1(𝑡),𝜑(𝑡)
𝑁

𝑖=1

� 

Substituting the collocation points we obtain 
a nonlinear system which can be solved 
using Newton’s method or Broyden’s 
method. 
4. NUMERICAL EXPERIMENTS 
 
In this section three test problems are 
considered to illustrate the accuracy and 
efficiency of the proposed method. 
 
Test  Problem  1. Consider  the  
following linear fractional  delay 
differential  equation  [8]: 

𝐷
1
2𝑢(𝑡) = 𝑢(𝑡 − 1) − 𝑢(𝑡) + 2𝑡 − 1 

+
Γ(3)

Γ �5
2�
𝑡
3
2, 

𝑢(𝑡) = 𝑡2, 𝑡 ∈ [−1,0]. 
The exact solution of the above problem 
is 𝑢(𝑡) = 𝑡2. 
 
Test Problem 2. Consider  the  
following linear fractional  delay 
differential  equation  [8]: 

𝐷
1
2𝑢(𝑡) = 𝑢(𝑡 − 1) − 𝑡 
𝑢(𝑡) = 𝑡, 𝑡 ∈ [−1,0]. 

The exact solution of the above problem 
is given by 

𝑢(𝑡) = −
2

Γ �1
2�
√𝑡. 

 
Test Problem 3. Consider the following 
nonlinear fractional delay differential 

equation [11]: 
𝐷1.5𝑢(𝑡) = 𝑢(𝑡 − 0.5) + 𝑢3(𝑡) +

2
Γ(1.5)

𝑡0.5 − (𝑡 − 0.5)2 − 𝑡6, 

𝑢(𝑡) = 𝑡2, 𝑡 ∈ [−0.5,0], 
subject to the boundary conditions 

𝑢(0) = 0,𝑢(1) = 1. 
The exact solution of the above problem 
is 𝑢(𝑡) = 𝑡2. 
 
Discussion 
 
Numerical results in terms of maximum 
absolute errors for all the three test 
problems are shown in Table 1.  It is 
observed from the table that maximum 
absolute errors are decreased with the 
increase in number of collocation points. 

 
Table 1: Maximum absolute errors 
N Test Problem 1 Test Problem 2 Test Problem 3 

2 
4 
8 

16 
32 
64 
128 
256 
512 
1024 
2048 

2.2 ×10−2 
7.1 ×10−3 
2.8 ×10−3 
1.1 ×10−3 
4.0 ×10−4 
1.4 ×10−4 
5.2 ×10−5 
1.9 ×10−5 
6.7 ×10−6 
2.4 ×10−6 
8.4 ×10−7 

1.2 ×10−1 
8.6 ×10−2 
6.1 ×10−2 
4.3 ×10−2 
3.0 ×10−2 
2.1 ×10−2 
1.5 ×10−2 
1.1 ×10−2 
7.6 ×10−3 
5.4 ×10−3 
3.8 ×10−3 

1.6 ×10−1 
1.5 ×10−1 
1.2 ×10−1 
9.0 ×10−2 
6.5 ×10−2 
4.6 ×10−2 
3.2 ×10−2 
2.3 ×10−2 

— 
— 
— 

 
5. CONCLUSION 
 

A new numerical method is developed 
using Haar wavelet for the numerical 
solution of fractional delay differential 
equations. The numerical results show 
that the method is efficient and accurate. 
The performance of the method is equally 
good for fractional delay differential 
equations. The method is applicable to 
both linear and nonlinear problems of 
fractional delay differential equations. 
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